
Growth of garnet and perovskite scintillators with non-isovalent minor components and related effects

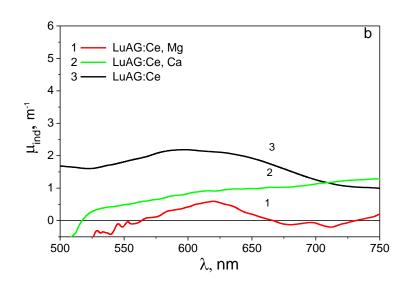
A. Petrosyan¹, K. Hovhannesyan¹, M. Derdzyan¹, A. Yeganyan¹, R. Sargsyan¹, F. Moretti², C. Dujardin²

¹Institute for Physical Research, National Academy of Sciences, 0203 Ashtarak, Armenia ²Institut Lumière Matière, UMR 5306 Université Lyon 1-CNRS, Villeurbanne, France

Co-doping Ce-materials with divalent impurities to stabilize Ce4+

S. Blahuta, et al, IEEE Trans. Nucl. Sci., 2013; LYSO:Ce,Ca(Mg) - Czochralski M. Nikl, et al, Cryst. Growth & Design, 2014; LuAG:Ce,Mg - micro-pulling

Due to addition of divalent impurities, a partial oxidation of Ce3+ into Ce4+ takes place.


What are advantages of Ce4+?

- Ce4+ can be considered as a pre-prepared Ce3+ which has already trapped a hole. This avoids the delays in hole trapping prior to electron trapping in the case of Ce3+.
- The result is acceleration of the decay and suppression of long decay components.

Can the divalent co-doping approach be useful for materials other than silicates and garnets?

Can co-doping with monovalent impurities be applied to stabilize Ce4+?

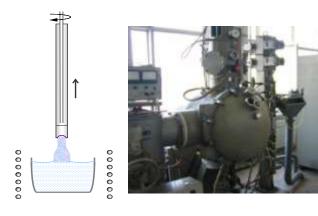
Radiation hardness

200 180 160 -140 - $\mu_{\text{ind}},\,m^{\text{-}1}$ 120 100 80 60 40 b 20 -0 0.05 0.10 0.15 0.20 0.25 Ce, at%

Induced absorption for Ca and Mg co-doped crystals (1 kGy).

Variation of induced absorption at 620 nm with Ce concentration (Ca=100 ppm)

In addition, the fact that Ce⁴⁺ competes with other traps for electrons, Ca(Mg) co-doping improves the radiation hardness, if a proper balance between Ce and co-dopant concentrations is optimized

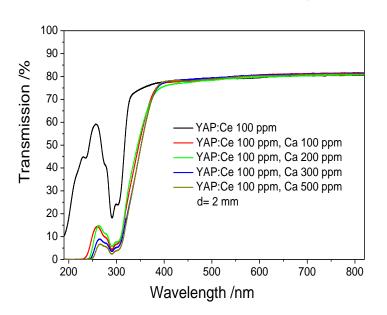

A.G. Petrosyan, et al, J. Cryst. Growth, 2015; LuAG:Ce,Ca F. Moretti, et al, SCINT 2015; LuAG:Ce,Ca(Mg)

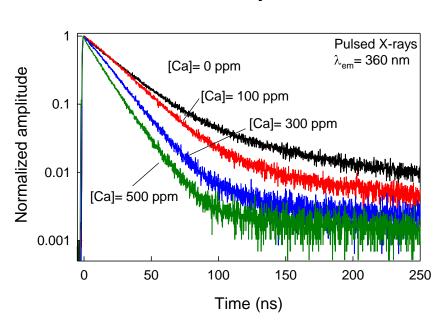
Contents: materials and characterization

- Can the divalent co-doping approach be useful for materials other than silicates and garnets?
- Can co-doping with monovalent impurities be applied to stabilize Ce4+?
- **YAP**: Ce, Ca
- YAG : Ce with Li+ and Na+
- Crystal chemistry and substitution
- Defects (examples for LuAG:Ce,Ca(Mg)
- Absorption
- Annealing effects
- Compositions which can be readily grown as quality single crystals

Perovskite single crystals with Ca co-doping

- Czochralski YAlO₃: Ce,Ca
- (1) [Ce]= 1 at% (in the melt), [Ca]= 0, 100, 300, 500 ppm
- (2) [Ce]= 100 ppm (in the melt), [Ca]= 0, 100, 300, 500 ppm

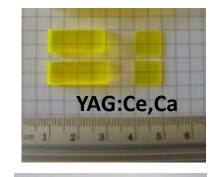



No degradation of crystalline quality is observed for introduced concentrations of Ca, so that single crystals can be grown under conditions usually applied to YAP:Ce

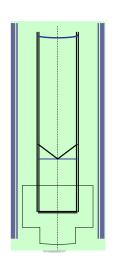
YAP: Ce,Ca

Transmission of YAP:Ce,Ca series

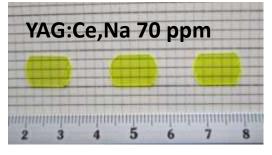
Decay

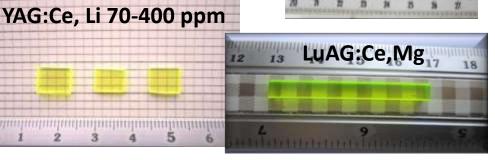

Decay is accelerated with increasing Ca concentration, which is a positive effect. The radioluminescence intensity is however decreased; among the reasons is the degrading transmission in the range of emission (300-450 nm).

Similar effects were recorded in LuAP:Ce,Ca


Garnet single crystals

Vertical Bridgman method; tested compositions:

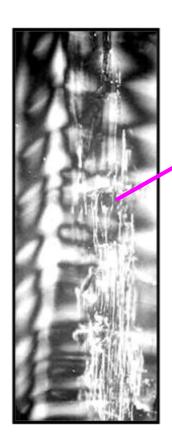

- (1) LuAG:Ce,Ca (Ce = 0.5-1 at%; Ca = 50 300 ppm)*
- (2) LuAG:Ce,Mg (Ce = 0.5-1 at%; Mg = 50-150 ppm)
- (3) YAG:Ce,Ca (Ce = 0.5 1 at%; Ca = 200 ppm)
- (4) YAG:Ce,Li (Ce = 0.7 at%; Li = 30 420 ppm)
- (5) YAG:Ce,Na (Ce = 0.7 at%; Na = 70 ppm)

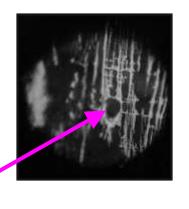


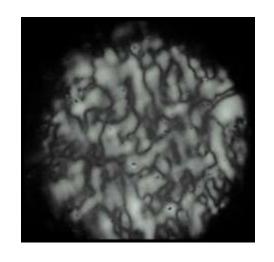
LuAG:Ce,Ca

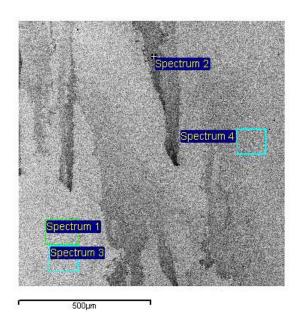
^{*)}K. Hovhannesyan, et al, ICDIM 2016

Melt compositions for quality crystals

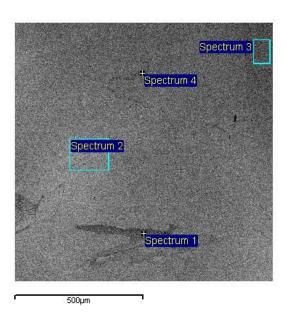

- YAP: Ce, Ca Ce \leq 1%, Ca \leq 500 ppm
- LuAP: Ce, Ca Ce \leq 0.5%, Ca \leq 100 ppm
- LuAG: Ce, Ca Ce \leq 0.8 %, Ca \leq 150 ppm
- LuAG: Ce, Mg Ce \leq 0.8 %, Mg \leq 150 ppm
- YAG: Ce, Ca Ce ≤ 1 %, Ca ≤ 200 ppm
- YAG:Ce, Li Ce \leq 1 %, Li \leq 420 ppm
- YAG: Ce, Na Ce ≤ 0.7 %, Na ≤ 70 ppm


Defects in LuAG:Ce,Ca


Longitudinal cuts under polarized light



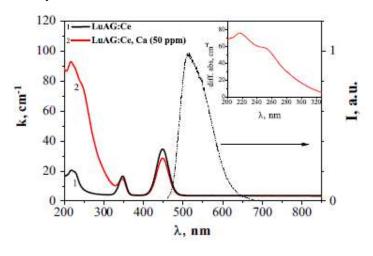
Ca = 0 Ca = 100 ppm Ca = 250 ppm


Ca = 300 ppm

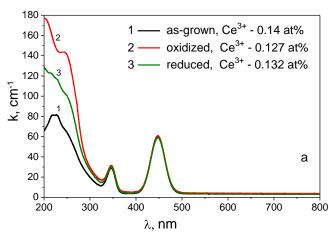
Defects

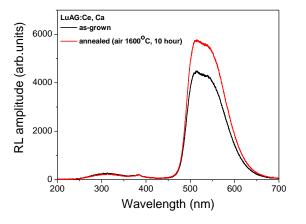
LuAG:Ce,Ca100 ppm, Mg 60 ppm

LuAG:Ce, Mg 150 ppm



Microphotographs obtained by the detector back-scattered electrons. Microanalysis performed on the scanning electron microscope (SEM) VEGATS 5130MM with the system INCA Energy 300 of EDS microanalysis.


The concentration of Ce is non-homogeneous, increasing in dark spots


Annealing effects

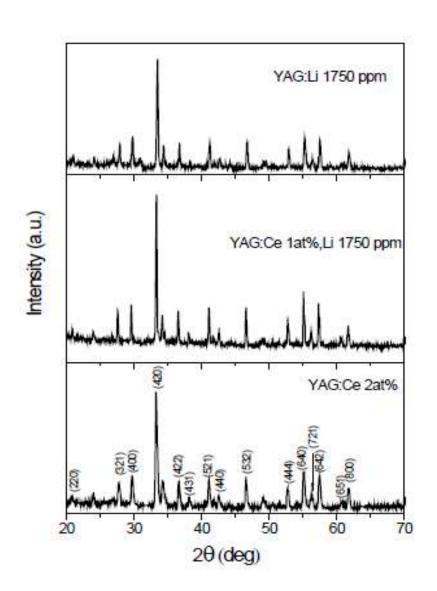
LuAG: Ce, Ca

Oxidizing annealing is efficient to increase the concentration of Ce4+, so that lower amounts of 2+ co-dopants can be introduced

Li and Na in garnets

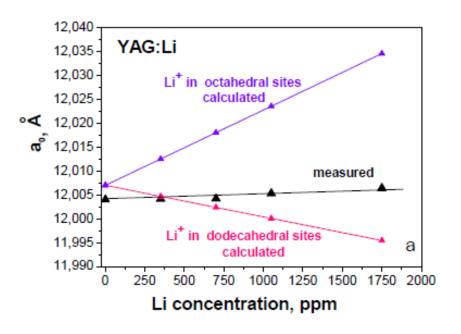
Li⁺: a and d sites

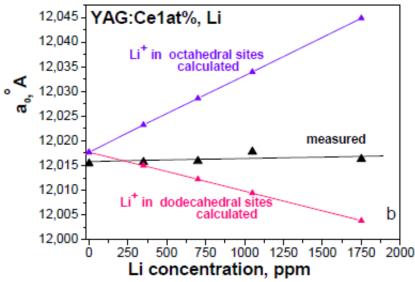
```
{Ca_3} [Li M<sup>2+</sup>] (V<sub>3</sub>) O<sub>12</sub> M=Mg, Co, Ni, Cu, Zn - Vanadates with garnet structure (G. Bayer, 1965) {Na_3} [Al<sub>2</sub>] (Li<sub>3</sub>) F<sub>12</sub> - cryolithionite (G. Menzer, 1930)
```


Na⁺: c sites

```
{NaCa_2} [Mn_2] (As_3) O_{12} - berzelit (F. Machatschki, 1930) 
{Na_3} [Al_2] (P_3) O_{12} - (E. Thilo, 1941)
```

YAG:Nd,Li - P. Arsenev, et al, phys. stat. sol (a) 1973 LuAG:Ce,Li - K. Kamada, M. Nikl, et al, J, Crystal Growth 2016 (accepted paper)

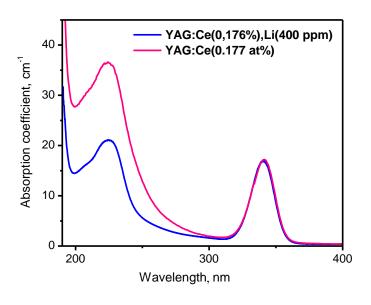

X-ray diffraction in YAG:Ce with Li co-doping

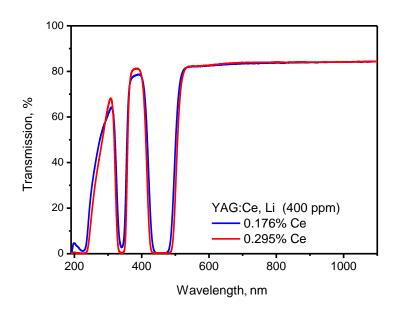


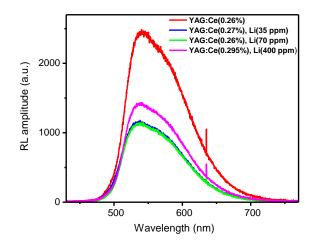
Ceramic samples 1600 C, air

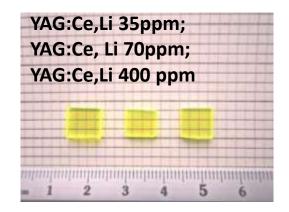
Single phase garnet structure is conserved in YAG:Li and YAG:Ce,Li even at very high Li concentrations (1750 ppm).

Lattice parameters of YAG:Li and YAG:Ce,Li

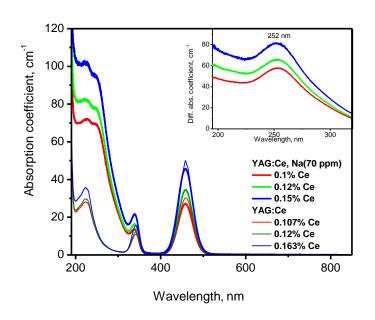


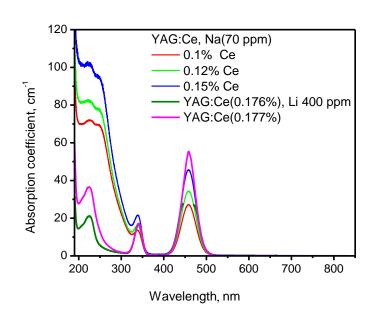



Li⁺ - 0.92 Å (8); 0.76 Å (6). Y3+ - 1.02 Å (8). Al3+ - 0.53 Å (6)


Most of Li+ probably goes to interstitial positions

YAG:Ce, Li single crystals





Co-doping of YAG:Ce with Na+

Absorption in UV in Na co-doped crystals is high, comparable to those in Ca or Mg co-doped.

Na+ is efficient to stabilize Ce4+ states

Summary

- The maximum concentrations of additional divalent or monovalent impurities that can be introduced, while conserving high quality of single crystals, were determined in different hosts.
- Oxidizing annealing of garnets is efficient to additionally increase the concentration of Ce4+.
- Co-doping of YAP with Ca leads to acceleration of the decay, however the emission intensity is decreased.
- Introduction of Li+ into YAG:Ce does not lead to formation of Ce4+ states. Basing on lattice parameters, it is suggested that Li+ goes to interstitial positions.
- Na+ is efficient to stabilize Ce4+ states in YAG:Ce single crystals.

Thank you for your attention

This work has been performed in the framework of

International Associated Laboratory IRMAS (CNRS-France and SCS-Armenia)

and

EU H2020 programme grant n. 644260 (INTELUM)

Experimental (ILM – CNRS)

Radioluminescence spectra were recorded at RT under X-ray irradiation. The excitation source was X-ray tube (Philips 2274) operated at 30 kV, 20 mA, exposure time is 5 seconds. Monochromator working in the range 430-770 nm and 230-570 nm for YAG:Ce,Li(Ca) and LuAG:Pr,Ca respectively.

Scintillation decay measurements were performed at room temperature under X-ray excitation using a picosecond pulsed laser (C10196; Hamamatsu Inc.) with 100 kHz and 0.2 mA, using interference filters YG11 and 320BP10 for YAG:Ce,Li(Ca) and LuAG:Pr,Ca respectively. To analyze the temporal histogram for the counts TCSPC module (PicoHarp 300) is adopted.