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Co-doping Ce-materials with divalent impurities to stabilize Ce4+  

S. Blahuta, et al, IEEE Trans. Nucl. Sci., 2013;   LYSO:Ce,Ca(Mg)    - Czochralski 

M. Nikl, et al, Cryst. Growth & Design, 2014;    LuAG:Ce,Mg          -   micro-pulling 

 
Due to addition of divalent impurities, a partial oxidation 
of  Ce3+ into Ce4+ takes place. 
 
What are advantages of Ce4+? 
∙ Ce4+ can be considered as a pre-prepared Ce3+ which 
has already trapped a hole. This avoids the delays in hole 
trapping prior to electron trapping in the case of Ce3+. 
 
∙ The result is acceleration of the decay and suppression 

of long decay components.  
 
Can the divalent co-doping approach be useful for 

materials other than silicates and garnets? 
Can co-doping with monovalent impurities be applied to 

stabilize Ce4+?   
  



Radiation hardness 

Induced absorption for Ca and Mg 

co-doped crystals (1 kGy). 
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Variation of induced absorption at 620 nm 
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In addition, the fact that Ce4+ competes with other traps for electrons, 
Ca(Mg) co-doping improves the radiation hardness, if a proper balance 

between Ce and co-dopant concentrations is optimized 
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• Can the divalent co-doping approach be useful for materials other than silicates 
and garnets? 

• Can co-doping with monovalent impurities be applied to stabilize Ce4+?   

 

• YAP : Ce, Ca 

• YAG : Ce with Li+ and Na+  

• Crystal chemistry and substitution 

• Defects (examples for LuAG:Ce,Ca(Mg) 

• Absorption 

• Annealing effects 

• Compositions which can be readily grown as quality single crystals 



Perovskite single crystals with Ca co-doping 

• Czochralski YAlO3: Ce,Ca 
- (1)       [Ce]= 1 at% (in the melt), [Ca]= 0, 100, 300, 500 ppm 
- (2)       [Ce]= 100 ppm (in the melt), [Ca]= 0, 100, 300, 500 ppm 

 
 
 
 
 
 
 

 

 

 

 

No degradation of crystalline quality is observed for introduced concentrations of 
Ca, so that single crystals can be grown under conditions usually applied to 

YAP:Ce  

 
 
 

 



YAP : Ce,Ca 
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Transmission of  YAP:Ce,Ca  series 

Decay is accelerated with increasing Ca concentration, which is a positive effect.  
The radioluminescence intensity is however decreased; among the reasons is  

the degrading transmission in the range of emission (300-450 nm). 

Similar effects were recorded in LuAP:Ce,Ca  

F. Moretti , et al, ICDIM 2016 
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Garnet single crystals 

*)K. Hovhannesyan, et al,  ICDIM 2016 

Vertical Bridgman method;  tested compositions: 
(1) LuAG:Ce,Ca  (Ce = 0.5-1 at%; Ca = 50 - 300 ppm)* 
(2) LuAG:Ce,Mg (Ce = 0.5–1 at%; Mg = 50–150 ppm) 
(3) YAG:Ce,Ca     (Ce = 0.5 - 1 at% ; Ca = 200 ppm)  
(4) YAG:Ce,Li       (Ce = 0.7 at% ;     Li = 30 – 420 ppm) 
(5) YAG:Ce,Na     (Ce = 0.7 at% ;       Na = 70 ppm) 

YAG:Ce,Na 70 ppm 

YAG:Ce, Li 70-400 ppm 

YAG:Ce,Ca 

LuAG:Ce,Ca 

LuAG:Ce,Mg 



Melt compositions for quality crystals 

• YAP: Ce, Ca    -        Ce ≤ 1%, Ca ≤ 500 ppm 

• LuAP: Ce, Ca   -       Ce ≤ 0.5%, Ca ≤ 100 ppm 

• LuAG: Ce, Ca    -     Ce ≤ 0.8 %, Ca ≤ 150 ppm 

• LuAG: Ce, Mg   -     Ce ≤ 0.8 %, Mg ≤ 150 ppm 

• YAG: Ce, Ca    -       Ce ≤ 1 %, Ca ≤ 200 ppm 

• YAG:Ce, Li       -      Ce ≤ 1 %, Li  ≤ 420 ppm 

• YAG: Ce, Na     -      Ce ≤ 0.7 %, Na ≤ 70 ppm 



Defects in LuAG:Ce,Ca 

          Ca = 0       Ca = 100 ppm     Ca = 250 ppm           Ca = 300 ppm 

Longitudinal cuts under polarized light 



Defects 

LuAG:Ce,Ca100 ppm, Mg 60 ppm  

Microphotographs obtained by the detector back-scattered electrons. 

Microanalysis performed on the scanning electron microscope (SEM) VEGATS 

5130MM with the system INCA Energy 300 of EDS microanalysis. 

The concentration of Ce is non-homogeneous, increasing in dark spots 

  LuAG:Ce, Mg 150 ppm  



Annealing effects 

Oxidizing annealing is efficient to increase the concentration of Ce4+ ,  
so that lower amounts of 2+ co-dopants can be introduced 

LuAG: Ce, Ca 
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Li and Na in garnets 

Li+ : a and d sites   

 

{Ca3} [Li M2+] (V3) O12   M=Mg, Co, Ni, Cu, Zn - Vanadates 

with garnet structure  (G. Bayer, 1965) 

{Na3} [Al2] (Li3) F12 –  cryolithionite    (G. Menzer, 1930) 

 

Na+ : c sites 

 

{NaCa2} [Mn2] (As3) O12  - berzelit (F. Machatschki, 1930) 

{Na3} [Al2] (P3) O12          - (E. Thilo, 1941) 

----------------------- 
YAG:Nd,Li  -   P. Arsenev, et al, phys. stat. sol (a) 1973 

LuAG:Ce,Li  - K. Kamada, M. Nikl, et al, J, Crystal Growth 2016 

(accepted paper) 



X-ray diffraction in YAG:Ce with Li co-doping  

Ceramic samples 
1600 C, air 

Single phase garnet structure is conserved 
in YAG:Li and YAG:Ce,Li even at very high 
Li concentrations (1750 ppm). 



Lattice parameters of YAG:Li and YAG:Ce,Li 

Li+ -     0.92 Å (8);  0.76 Å (6).    Y3+  - 1.02 Å (8).     Al3+  – 0.53 Å (6) 

Most of Li+ probably goes to interstitial positions 



YAG:Ce, Li single crystals 
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Co-doping of YAG:Ce with Na+ 

200 300 400 500 600 700 800020406080100120 YAG:Ce, Na(70 ppm) 0.1%  Ce 0.12% Ce 0.15% Ce YAG:Ce(0.176%), Li 400 ppm YAG:Ce(0.177%)Absorption coefficient, cm-1 Wavelength nm

Absorption in UV in Na co-doped crystals is high, comparable to those in Ca or Mg 
co-doped.  

Na+  is efficient to stabilize Ce4+ states  
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Summary 

• The maximum concentrations of additional divalent or 
monovalent impurities that can be introduced, while conserving 
high quality of single crystals, were determined in different hosts . 

• Oxidizing annealing of garnets is efficient to additionally increase 
the concentration of Ce4+. 

• Co-doping of YAP with Ca leads to acceleration of the decay, 
however the emission intensity is decreased. 

• Introduction of Li+ into YAG:Ce does not lead to formation of Ce4+ 
states. Basing on lattice parameters, it is suggested that Li+ goes 
to interstitial positions.  

• Na+ is efficient to stabilize Ce4+ states in YAG:Ce single crystals. 
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Experimental (ILM – CNRS) 

Radioluminescence spectra were recorded at RT under X-ray 

irradiation. The excitation source was X-ray tube (Philips 2274) 

operated at 30 kV, 20 mA, exposure time is 5 seconds. 

Monochromator working in the range 430-770 nm and 230-570 nm 

for YAG:Ce,Li(Ca) and LuAG:Pr,Ca respectively. 

 

 

Scintillation decay measurements were performed at room 

temperature under X-ray excitation using a picosecond pulsed laser 

(C10196; Hamamatsu Inc.) with 100 kHz and 0.2 mA, using 

interference filters YG11 and 320BP10 for YAG:Ce,Li(Ca) and 

LuAG:Pr,Ca respectively. To analyze the temporal histogram for the 

counts TCSPC module (PicoHarp 300) is adopted. 
 


