ISMA NAS of Ukraine

Scintillation crystals of rare earth aluminates grown under reducing conditions.

Arhipov Pavel

<u>Outline</u>

- 1. Materials application.
- 2. Motivation.
- 3. Peculiarities of undoped YAG crystals.
 - 3.1 Absorption spectra of as-grown YAG crystals.
 - 3.2. Absorption spectra of annealed YAG.
 - 3.3. Undoped YAG luminescence.
- 4. Obtaining of undoped LuAG.
- 5. Obtaining of YAG: Ce crystals.
- 6. Conclusions.

Crystals of rare earth aluminates are widely used in instrumentation.

Undoped YAG - as optical element.

YAG and LuAG activated with rare earth elements are used as laser and scintillation material, YAG:Ce as a phosphor in LED.

Czochralski growth from Ir crucible and its deformation.

Ir replacement - molybdenum (Mo), tungsten (W), and their alloys.

Benefits:

Temperature resistance.

Workability.

Cost – thousand times cheaper.

Durability.

More intense oxidation at high temperatures. Interaction with melt components.

Protective atmosphere:

Carbon monoxide: (CO) Hydrogen: H2 Their mix: (CO)+H2

The use of carbon insulation provides a good thermal insulation and a causes the reducing conditions

$$Ar(>99\%) + C + O => Ar + (<1\%)CO$$

Peculiarities of undoped YAG crystals grown under weak oxidizing and reducing atmosphere.

Raw material, synthesis condition.	Growth conditions	View of as - grown crystals.	
Powder of Al ₂ O ₃ & Y ₂ O ₃ , sintered under weakly-oxidizing atmosphere under 1600 °C.	Ir crucible, weakly oxidizing atmosphere.	YAG 1 (Ir)	
Powder of Al ₂ O ₃ & Y ₂ O ₃ , sintered under weakly oxidizing atmosphere under 1600 °C.	W crucible, weakly reducing atmosphere, melt preparation time < 2 h.	YAG 2(W)	
Powder of Al ₂ O ₃ & Y ₂ O ₃ , sintered under weakly oxidizing atmosphere under 1600 °C.	W crucible, weakly reducing atmosphere, melt preparation time < 30 h.	YAG 3 (W)	
YAG 3 crystal.	Ir crucible, weakly oxidizing atmosphere.	YAG 4 (Ir,W)	

As grown YAG absorption spectra.

Impact of post growth annealing under oxidizing and reducing atmospheres.

	As- grown	Air 1200 °С, 5 ч	Ar+CO, 1800 °C, 30 min
YAG 1 (Ir)			
YAG 2 (W)	15		15
YAG 3 (W)	*	*	8
YAG 4 (Ir,W)	11 5	11 5	

Absorption spectra of YAG 1 4 annealed under oxidizing and reducing atmospheres.

Air treatment 5 h, 1200 C.

Reducing atmosphere treatment 30 min, 1800 C.

X-ray and photoluminescence of YAG(W) crystals.

under 405 nm excitation.

Photoluminescence of YAG(W) crystals, X –ray luminescence of YAG(W) crystals.

Obtaining of undoped LuAG crystals from W crucible under reducing atmosphere.

As-grown LuAG (W) crystal.

As-grown LuAG (W) sample.

Influence of treatment under reducing atmosphere on coloration of LuAG crystals grown from Ir or W crucible.

LuAG (Ir) sample Ht CO.

LuAG (W) sample Ht CO.

Obtaining of YAG:Ce crystals from W crucible under reducing atmosphere.

YAG:Ce (W) AG

YAG:Ce (W) AG

YAG:Ce (W) Ht CO

X-ray luminescence of as grown YAG:Ce crystals.

Conclusions.

- 1. Ir crucibles could be replaced by cheaper W crucibles in case of obtaining rare earth aluminates, such as YAG, LuAG, YAG:Ce. Carbon admixture introduces into the crystal, but its position in the lattice is unknown.
- 2. Post growth thermal treatment is a key factor to obtain optical and scintillation parameters comparable to crystals grown from Ir crucibles.

Acknowledgements

The work is partially supported by:

- ☐ Marie Skłodowska-Curie Research, Innovation Staff Exchange Project H2020-MSCA-RISE-2014 No. 644260 "Intelum"
- ☐ Ukrainian-French PICS project between CNRS (Project no.6598) and National Academy of Sciences of Ukraine (Project F1-2016)

Thank you!

Obtaining of pure CeAlO₃ (CAP) crystals from W crucible in reducing atmosphere.

Absorption spectra of CAP (W) crystals treated in CO under 1300 °C 1 h.