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Born Reciprocity version
1 Reciprocity Transformations (RT):

xµ

qe
→

pµ

pe
,

pµ

pe
→ −

xµ

qe
.

2 Lorentz and Reciprocal Invariant quadratic form:

S2
B =

1

q2
e

xµxµ +
1

p2
e

pµpµ, ηµν = diag{1,−1,−1,−1}

3 xµ, pµ are quantum-mechanical canonic operators:

[xµ, pν ] = i~ηµν
4 Phenomenological parameter according definition
pe = Mc so that

qe = ~/Mc = Λc (Compton length).

The mass M is a free model parameter.
5 Two dimensional constants qe[length], pe[momentum]

connected by corellation:

qepe = ~ (Plank constant). 3 / 36



Relativistic Oscillator Equation (ROE)

Selfreciprocal-Invariant Quantum mechanical Equation:(
−

∂2

∂ξµ∂ξµ
+ ξµξµ

)
Ψ(ξ) = λBΨ(ξ),

where ξµ = xµ/Λc.
The (ROE) symmetry ≈ U(3, 1). There are solution
corresponding linear discrete mass spectrum.
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Maximum Tension Principle (MTP)
The space-time and momentum variables are to be just the
same dimentions of a quantity. It is necessary to have the
universal constant with dimention: momentum/length, or
equivalently: mass/time, energy/time, momentum/time. In
reality: MTP [Gibbons, 2002]
Gibbons Limit:

Maximum force Fmax =

(
dp

dt

)
max

=
c4

4GN
= FG,

Maximum power Pmax =

(
dE

dt

)
max

=
c5

4GN
= PG.

[momentum]/[length] – Universal constant

æ0 =
pe

qe
=

c3

4GN
[LMT, 1974, 2003]

It is evident: æ0 = c−1Fmax = c−2Pmax. All these values are
essentially classic (does not contain Plank constant ~).
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Born Reciprocity and Gibbons Limit

Let the parameter a to be some fixed (nonzero!) value of action
S. We replace initial Born’s relation

qepe = ~ by πqepe = a

without beforehand action discretness supposition. We demand
the nonzero area Sfix = πqepe of the phase plane only.
The second suggestion is:

æ0 =
pe

qe
=

c3

4GN
(universal constant).
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Now the parameters qe, pe are defined separately

qe =

√
a

πæ
, pe =

√
aæ

π

Evidently: the phenomenological constants Ee = pec [Energy]
and te = c−1qe [time] satisfy the conditions

Eete = πa,
Ee

te
= c2æ =

c5

4GN
Under Born’s parametrization

pe = Mc, qe =
2MGN

c2
= rg(M) – gravitational radius.

General mass-action correlation

M2 =
ac

4πGN
.

It is valid as in classical as in quantum case. Under supposition
when amin = h we receive

M2 =
hc

4πGN
=

1

2
M2
P l, MP l =

√
~c
GN

– Plank mass.
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Maximum Force and Modified Newton Gravity

(NG):
∣∣f ∣∣ = GN

mM

r2
≡

c4

4GN

2mGN

c2

2MGN

c2

1

r2

= FG
rgRg

r2
≡ FG

r2
0

r2
(r > 0, r0 =

√
rgRg)

(ModNG):
∣∣∣fmodN

∣∣∣ = FG
r2

0

r2
(r > r0),

∣∣∣fmodN

∣∣∣max
r=r0

= FG

The corresponding gravitational potential Energy

Umodgr = −FG
r2

0

r
possess a minimum under r = r0

Umodgr (min) = −FGr0 = −
c4

4GN

2GN

c2

√
mM = −

c2

2

√
mM

We have dealing (instead of point-like masses) with a pair
spacely extended simple massive gravitating objects like the
elastic balls or drops with a high surface tension.
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r0

Rg rg

mM

Erest(M,m) = Mc2 +mc2 −
1

2

√
mMc2
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The whole energy such a “binary” system is as follows:

E(M,m) = Mc2 +mc2 −
1

2

√
mMc2

= (M +m)c2

{
1−

1

2

√
µ

M +m

}
,

where µ = mM/(m+M).

Mc2, mc2, (M +m)c2 – rest energy

∆E =
1

2

√
µ(M +m)c2 =

1

2

√
mMc2 – energy corresponding

the “mass defect” ∆m = 1
2

√
mM

10 / 36



“Gravitational fusion” picture

λ =
[eliminated energy]

[rest energy]
=

∆E

(M +m)c2

=

√
mM

2(M +m)
=

1

2

√
δ

1 + δ
,

where
δ =

m

M
, δ0 6 δ 6 1, δ0 =

Mmin

Mmax

Maximum λmax =
∆Eeliminated

Erest
=

1

4

under δ = 1 (m = M)

Such a “fusion” of two equal rest mass M lead to mass
= 3M/2, the Energy ∆E = Mc2/2 eliminate (3 : 1).
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Extended Phase Space as a Basic Manifold

Space of states (QTP) and Energy (H) (sec [J. Synge, 1962]) in
general: 2 + 2N dimensions. The metric is

ηAB = diag{
N︷ ︸︸ ︷

1,−1,−1, . . . ,−1}

(X,Y ) – pair of conjugated pseudoeuclidean vectors XA, YA,
A,B = 0, 1, . . . , N (N + 1 dimention).
The Poisson brackets for ϕ(X,Y ), f(X,Y ),

{ϕ, f}A,B =

N∑
k=0

{
∂ϕ

∂Xk

∂f

∂Yk
−

∂ϕ

∂Y k
∂f

∂Xk

}
so that

{XA, YA}A,B = ηAB
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Dynamic System in (QT, PH) is defined, when the Energy
Surface (2N + 1 dimention)

Ω(X,Y ) = 0

is defined. Solving this equation on Y0 we obtain Energy
equation

Y0 = F (Xk, Yl, X0) k, l = 1, 2, . . . , N

The corresponding Hamilton function of the System is by def:

H ≡ Y0 = H (Xk, Yl, Y0)

We shall consider (2 + 2 · 3) – dimensional version (QT, PH)

A,B → µ, ν = 0, 1, 2, 3, ηµν = diag{1,−1,−1,−1},

Xµ, Xµ are real 4-dimensional pseudoeuclidean SO(3, 1) –
vectors.
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Complexification of (QT, PH)

Let us introduce the complex 4-vector Zµ according definition:

Zµ = Xµ + iY µ, ηµν = diag{1,−1,−1,−1}

and define the real norm

ZµZ∗µ = ZµηµνZ
µ∗

= |Z0|2 − |Z1|2 − |Z2|2 − |Z3|2 = inv
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Complex Lorentz Group with a real metric
(Barut Group [Barut 1964])

The group of 4× 4 complex matrices Λ of transformations

Z′ = ΛZ, Z = X + iY

satisfying the condition

ΛηΛ† = η, († – hermitien conjugation)

Notice: the diagonal matrices ΛR and Λ̄R ∈ (BG)

ΛR = −iI4 = −idiag{1, 1, 1, 1}

and
Λ̄R = −iηµν = −idiag{1,−1,−1,−1}

Metric invariant (no positive-defined)

ZµZ∗µ = |Z0|2 − |Z1|2 − |Z2|2 − |Z3|2 = inv

Three possibilities: |Z|2 ≷ 0, |Z|2 = 0 – isotropic case
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SU(3, 1) – subgroup structure

(QTPH)

QT = {r, ct} = xµ

PH =
{
p, E/c

}
= pµ

~βv = ~v/c

(PTQH)

PT =
{
p, F0t

}
= Πµ

QH = {r, E/F0} = Ξµ

~βf = ~f/F0

F0 = Fmax

SOH3L SUH3L

SOvH3, 1L

SO f H3, 1L

C
center Ukl � HUlkL*

Lk

Mk

C4

k, l = 1, 2, 3
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Reciprocal Invariant S2
B as BG metric invariant
ZµZ∗µ

By def: Zµ = Xµ + iYµ

Xµ =
1

qe
xµ =

1

qe
{x0, xk}, Yµ =

1

pe
pµ =

1

pe
{p0, pk}.

Then:

S2
B =

1

q2
e

(
x2

0 −
3∑
k=1

x2
k

)
+

1

p2
e

(
p2

0 −
3∑
k=1

p2
k

)
=

=
x2

0

q2
e

+
p2

0

p2
e

−
3∑
k=1

(
x2
k

q2
e

+
p2
k

p2
e

)
= |Z0|2 −

3∑
k=1

|Zk|2 = ZµZ∗µ

Let xµ, pµ to be 4-vectors under SOv(3, 1)-transformations
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Notice! There exist alternative:

Z̄µ = X̄µ + iȲµ

where

X̄µ = Ξµ
def
=

{
x0

qe
,
pk

pe

}
, Ȳµ = Πµ

def
=

{
p0

pe
,
xk

qe

}
.

It is evident:

|Z̄µ|2 = ΞµΞµ + ΠµΠµ =
x2

0

q2
e

−
3∑
k=1

p2
k

p2
e

+
p2

0

p2
e

−
3∑
k=1

x2
k

q2
e

=

=
1

q2
e

xµxµ +
1

p2
e

pµpµ = |Zµ|2.

The natural supposition: Ξµ and Πµ are 4-vectors under
SOf(3, 1)-transformations

18 / 36



Selfreciprocal Case: S2
B = 0

Quadratic form S2
B = ZµZ∗µ is not positive defined

Three possibilities ZµZ∗µ = 0, ZµZ∗µ ≷ 0.
Especial interesting is:

S2
B =

1

p2
e

pµpµ +
1

q2
e

xµxµ = 0

Two possibilities
1

pµpµ = xµxµ = 0

(light cone, massless particles, standart clock
synchronisation)

2

xµxµ = −q2
e , pµpµ = p2

e,

qe = rg(me) =
2meGN

c2
, pe = mec.
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BG: some kinematic outcome
(1) Reciprocal-Invariant time TR

zµ = xµ + iæ−1
0 pµ, æ0 =

pe

qe
=

c3

4GN

dTR
def
= c−1

√
zµz∗µ

= c−1
√
dx2

0 − dr2 + æ−2
0 (dp2

0 − dp2)

= dt
√

1− β2
v
− β2

f
+ β2

v
β2
f

cos2 α

= dt

√(
1− β2

v

) (
1− β2

f

)
−
(
β
f
× β

v

)2
.

where

β
v

=
ṙ

c
, β

f
=

ṗ

FG
, FG =

c4

4GN
, (·) =

d

dt
,

t – is the laboratory time (comoving observer time).
α – is the angle between ṙ and ṗ.
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(2) In the comoving RF :

dTR(βv = 0) = dt
√

1− β2
v

There must exist an extra time retardation.
(3) cosα = ±1, (β

f
× β

v
) = 0

dT
‖
R = dt

√
1− β2

v

√
1− β2

f

(4) cosα = 0, (β
f
× β

v
)2 = β2

f
· β2

v

dT⊥R = dt
√

1− β2
v
− β2

f
6= dT

‖
R

(5) cosα = ±
√

2/2,

dT
‖
R = dT⊥R

(6) The upper limit of |ṙ| and |ṗ| in the expression for dTR:

|ṙ|max = c/
√

2, |ṗ|max = FG/
√

2
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Complex Lorentz Boost Transformations

Let us represent a BG-transformations using the following
parametrization:

Λ(β) =

(
Γ Γ · β

Γ · β∗ I3 +
β·β∗

|β|2 (Γ− 1)

)
, Λ(β)ηΛ†(β) = η

where β = β
v

+ iβ
F

= v/c+ iF/FG,
v – is a const velocity
F – is a const force, FG = c4/4GN – max force

Γ = detΛ−1(β), I3 = diag{1, 1, 1}, β·β∗ – 3×3 tensor-diada.

Z′ = Λ(β)Z :

(
Q′0 + iP ′0
Q′ + iP ′

)
= Λ(β)

(
Q0 + iP0

Q+ iP

)
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The simplest case β
v

= {βv, 0, 0}, βF = {βF , 0, 0}

Λ(β) = Γ(β)

(
1 β
β∗ 1

)
, β = βv + iβF ,

Γ(β) =
1√

1− |β|2
, βv =

v

c
, βF =

F

FG
,

F – is the constant force uniformly accelerated (noninertial)
FR. (

Q′0 + iP ′0
Q′ + iP ′

)
= Γ(β)

{(
1 βv
β∗v 1

)
+i

(
0 βF
−βF 0

)}(
Q0 + iP0

Q+ iP

)
Γ(β) =

(
1− β2

v − β
2
F

)−1/2
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βF = 0 βv = 0, FG = c4

4GN(
ct′

x′

) (
t′

p′/FG

)
= γv

(
1 βv

βv 1

)(
ct
x

)
, = γF

(
1 −βF

−βF 1

)(
t

p/FG

)
,(

E′/c
p′

) (
E′

FGx
′

)
= γv

(
1 βv

βv 1

)(
E/c
p

)
, = γF

(
1 −βF

−βF 1

)(
E
FGx

)
,

γv = 1/
√

1− β2
v γF = 1/

√
1− β2

F

ẋ′ =
ẋ+ V

1 + ẋV/c2
: ṗ′ =

ṗ− F
1− ṗF/F 2

G

:

β′
v =

βv + βV

1 + βvβV

β′
f =

βf − βF

1− βfβF

,

ṗ =
dp

dt
= f,

dE

dx
= −f
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Hamiltonian selfreciprocal
one-particle classical model

The selfreciprocal expression of Born interval

S2
B =

(
x2

0 − r
2
)
/q2
e +

(
p2

0 − p
2
)

= 0

is by definition the Energy equation in the
(2 + 2 · 3)-dimensional extended Phase Space (QTPH)
[J.Synge, Class. Dyn.] and

P 2
0 + T 2 −

(
P 2 +Q2

)
=

(
P0 +

√
P 2 +Q2

)(
P0 −

√
P 2 +Q2

)
= 0

is the energy surface equation. According to (QTPH)
definition H(Q,P , T ) ≡ −P0 is the Hamilton function of
system. In classical version we are to choose the positive sign.
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So that Hamilton function H(Qk, Pk, T ) is as follows

H(Qk, Pk, T ) =
√
H2

0 − T 2, Qk =
xk

qe
, Pk =

pk

pe
,

where

T = x0/qe = vet (ve = v(me) = æ0/me)

H0 =
√
P 2
k +Q2

k – energy (integral of motion)

dH0

dT
=
{
H0(P ,Q),H(P ,Q, T )

}
q,p

= 0

The Hamiltonian equations
dQk

dT
=

Pk√
H2

0 − T 2
,

dPk

dT
=

−Qk√
H2

0 − T 2

possess under the spherical-symmetric initial conditions the
following solution

|~Q| = sin(ϕ+ ϕmin), |~P | = cos(ϕ+ ϕmin),

ϕ = arcsin(T/H0) (0 < ϕ < π/2),

ϕmin 6= 0 – minimal angle ∼ minimal value of peqe 26 / 36



The model: massive pulsating sphere

Frequency of pulsation (comoving FR time)

ω0(me) =
æ0

H0me
=

c3

4meGN
∼

1038s−1

me
.

Pulsation Period

T0(me) = 2π/ω0(me) ∼ me · 10−38s.

Spatial peak value

R(me) = 4meGN/c
2 ∼ me · 10−28sm.

For me = mu ∼ 1055 gr,

T (mu) ∼ 1017s ∼ H−1
0 ∼ ∆tu, R(mu) ∼ 1027sm ∼ Ru

.
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Elliptic trajectory: r − p-spase

The eccentricity

ε(α) =

√
~Q2

+ − ~Q2
−∣∣∣~Q+

∣∣∣ =

√
2
(
1− α2

)1/4(
1 +
√

1− α2
)1/2

ε(α)|α�1
∼= 1−

α2

8
= 1−

~Q2 ~P 2

2
(
~Q2 + ~P 2

)2 , bat 6= 1.

α2|P�Q ∼=
4~P 2

~Q2
=

2p

ræ0
,

p

r
� æ0
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P (Q̇) – dependence

~̇Q =
d~Q

dT
=

~P√
~P 2 + ~Q2 − T 2

→ ~P 2 =
~̇Q2

1− ~̇Q2

(
~Q2 − T 2

)
~Q2 − T 2 = 1 – hyperbolic motion!

~P 2
max =

~̇Q2
max

1− ~̇Q2
max

. But |~Pmax| = 1

Therefore 2 ~̇Q2
max = 1 and ṙmax = c/

√
2
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The case S2
B = ΛB 6= 0

From S2
B = PµPµ +QµQµ = ΛB > 0 to

S̄2
B = S2

B − ΛB = 0.
The Energy Integral is:

H0(P,Q)|ΛB=0 → H0(P,Q,ΛB)

= H0 =

√
~P 2 + ~Q2 + ΛB

pe(m), qe(m),
pe(m)

qe(m)
= æ0

→ pe(M), qe(M),
pe(M)

qe(M)
= æ0

Scale transformation of the parameter: M = m
√

1 + ΛB.
Consider the case ΛB = 1.
Two versions: Classical and Quantum

30 / 36



The Newtonian Limit
Let us consider the Energy integral H0 =

√
P 2 +Q2 + 1

under conditions |Q| � 1, |P | � 1, |P |/|Q| � 1.
Use the dimensional values

E = cpeH0 = cpe

(
p2

p2
e

+
r2

q2
e

+ 1

)1/2

= cpe

√
1 +

r2

q2
e

{
1 +

p2

p2
e

(
1 +

r2

q2
e

)−1
}1/2

≈ mc2 +
1

2
mv2 +

1

2
mr2ω2

0(m).

Omitting the “rest energy” mc2 we receive

EN =
1

2
mv2 +

1

2
Irω

2
0(m)

where Ir = mr2 – moment of inertia
ω0 = æ0/m – angular velocity
Erot = mr2ω2

0/2– is the kinesthetic energy of rotation.
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Canonical Quantization S2
B → Ŝ2

B

Accoding the universal condition

m2
e =

cae

4πGN
→
(
ae =

h

2

)
→

~c
4GN

=
1

4
M2
P

the parameters pe, qe, Ee, te becomes Planken. The basic Born
equation can be written in the form (Fock presentation)

ŜB|n0, n〉 = 2

(
Ĥ0 −

3∑
k=1

Ĥk

)
|n0, n〉 = λB(n0, n)|n0, n〉,

where Ĥµ (µ = 0, 1, 2, 3) are linear QHOsc Hamiltonians.
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The discrete spectrum of (mass)2:

M2(n0, n) = {n0 − (n+ 1)}M2
P = N(n0, n)

( ~c
GN

)
where N(n0, n) = n0 − (n+ 1), n =

∑3
k=1 nk.

Each of nµ = 0, 1, 2, . . . (µ = 0, 1, 2, 3) independently.
Eigenstates

|n0, n〉 =

3∏
µ=0

|nµ〉, N(n) =
1

2
(n+ 1)(n+ 2)

is the degeneracy degree of |n〉 ∼ |n1〉|n2〉|n3〉 states. In
reality the operator Ŝ2

B is looking out as the quantum-
mechanical action operator having linear spectrum SN in unit
of h:

SN = N~ (N = 1, 2, 3, . . .)
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Canonical Quantization
H0(P ,Q)→ Ĥ0(P̂ , Q̂)

Let as consider the variables P̂k, Q̂l in the classical Energy
integral

H0 =
√
P 2 +Q2 + 1

as canonically conjugated operators [P̂k, Q̂l] = −iδkl, the
constants pe and qe in definition

Q̂l =
x̂l

qe
, P̂k =

p̂k

pe

are Planken.

Ĥ0 → Ĥ0 =
(
P̂

2
+ Q̂

2
+ 1

)1/2
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The root extraction according Dirac procedure
gives (in noncovariant notations):

for DO Hamiltonian and its Supersymmetry Partner H±DO

Ĥ±0 (P̂ , Q̂, 1) = αkP̂k + β
(
I ∓ iαkQ̂k

)
=

= Ĥ±DO = αk

(
P̂k ∓ iβQ̂k

)
+ β,

where αk, ρk (k = 1, 2, 3) – 4× 4 Dirac matrices, β = ρ3.
Ĥ±DO = Ĥ±DO(MP l) – well known Dirac Oscillator
Hamiltonian which describes the one-half Spin particle with a
Plank mass. The exact solutions of this model are well known.
But generally accepted physical interpretation of DO-model is
absent up to now.
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