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Topics

@ Reciprocal Symmetry and Maximum Tension Principle
® Maximum Force and Newton gravity
® Extended Phase Space (QTPH) as a Basic Manifold

® Complex Lorentz group with Real Metric as Group of
Reciprocal Symmetry

® One-Particle Quasi-Newtonian Reciprocal-Invariant
Hamiltonian dynamics

® Canonic Quantization: Dirac Oscillator as Model of
Fermion with a Plank mass
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Born Reciprocity version

® Reciprocity Transformations (RT):

x T

Tu _Pu Pu o Tu
de DPe DPe de

® Lorentz and Reciprocal Invariant quadratic form:

1 1 .
Sé = im“mﬂ + ?p“p;u Nuv = dlag{l, —-1,—1, _1}
qe pe

® x,, p, are quantum-mechanical canonic operators:

[:L'/.L? pu] = ihnuu
® Phenomenological parameter according definition
Pe = Mc so that

ge = h/Mc = A, (Compton length).

The mass M is a free model parameter.
® Two dimensional constants ge[length], pe[momentum]
connected by corellation:

gepe = I (Plank constant).



Relativistic Oscillator Equation (ROE)

Selfreciprocal-Invariant Quantum mechanical Equation:

62
- K W) =AY
(~genge, *+€"6) ¥(©) = 25¥(0)
where €¥ = x# /A..

The (ROE) symmetry = U (3, 1). There are solution
corresponding linear discrete mass spectrum.
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Mazximum Tension Principle (MTP)

The space-time and momentum variables are to be just the
same dimentions of a quantity. It is necessary to have the
universal constant with dimention: momentum/length, or
equivalently: mass/time, energy/time, momentum/time. In
reality: MTP [Gibbons, 2002]

Gibbons Limit:

Maxi force F, = | — = = F
aximum Iiorc = = =
max It G G

Maxi p P, = <> = = P(;'
X1lmuin power maxr — = = .
[! ! max : N

[momentum]/[length] — Universal constant

_ Pe c?

xXg = =
de 4=CTYN

[LMT, 1974, 2003|

It is evident: a9 = ¢ ' Fpae = ¢ 2 Ppax. All these values are

essentially classic (does not contain Plank constant ).
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Born Reciprocity and Gibbons Limait

Let the parameter a to be some fixed (nonzero!) value of action
S. We replace initial Born’s relation

gePe = I by mqepe = a

without beforehand action discretness supposition. We demand
the nonzero area S¢;» = mqepe of the phase plane only.
The second suggestion is:

_ Pe c?

xXxg = =
de 4GN

(universal constant).
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Now the parameters qe, pe are defined separately

a ax

de = s Pe =
Te s

Evidently: the phenomenological constants Ee = pec [Energy]
and te = ¢~ 1qe [time] satisfy the conditions

E,. 9 e
Ecte = ma, — = c°ae =
te 4G N
Under Born’s parametrization
2MGnN - .
Pe = Mec, ge=—3— = rg(M) — gravitational radius.
c
General mass-action correlation
M2 — ac
T 4nG N '

It is valid as in classical as in quantum case. Under supposition
when am,in = h we receive

9 he 1, he
M~ = = -Mp,, Mp; = |/ —=— — Plank mass.
471'GN 2 GN




Maximum Force and Modified Newton Gravity

mM ¢t 2mGnN2MGN 1

NG): =G = —
(NG): 1] N2 4Gn 2 2 r?
Rg TS
= Fg = Fgﬁ (r >0, ro=+/TgRy)
2
(ModNG):  |f5| = Fa=y (r>m0), || =Fe

The corresponding grawtatlonal potential Energy

,r2

Umod —Fg-2
T

possess a minimum under 7 = rg
4
c* 2G
U™%(min) = —Fgro = N VmM = —*\/—
9 4G N c2
We have dealing (instead of point-like masses) with a pair

spacely extended simple massive gravitating objects like the
elastic balls or drops with a high surface tension.



1
Erewt(M,m) = M2 4 me? — - \/mbe?



The whole energy such a “binary” system is as follows:

1
E(M,m) = Mc?® + mc® — Ex/rnMc2

= (M +m)c? {1—;,/M“+m},

where p = mM /(m + M).
Mc?, mc?, (M 4 m)c? — rest energy
1 s 1 2 .
AFE = Ex/u(M + m)c® = 5\/ mM c* — energy corresponding

the “mass defect” Am = %VmM
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“Gravitational fusion” picture

X = [eliminated energy] AFE
[rest energy] (M + m)c?
vmM 1 V6
“2M4+m) 21+0
where

=" Ga<o<l, 6= Mmin

M Mmax
Maximum Apge = —AEelimmated = L

Erest 4

under d =1 (m = M)

Such a “fusion” of two equal rest mass M lead to mass
= 3M /2, the Energy AE = Mc?/2 eliminate (3 : 1).



FExtended Phase Space as a Basic Manifold
Space of states (QTP) and Energy (H) (sec [J. Synge, 1962|) in
general: 2 4+ 2NN dimensions. The metric is

N
NAB = diag{l’ -1,-1,..., _1}

(X,Y) — pair of conjugated pseudoeuclidean vectors X a, Ya,
A,B=0,1,...,N (N 4+ 1 dimention).
The Poisson brackets for ¢(X,Y), f(X,Y),

N
B Ao Of ¢ Of }
{p, f}A,B = ,;) { Xk dY;, Yk 90X
so that

{Xa,Yalsp =naB



Dynamic System in (QT, PH) is defined, when the Energy
Surface (2N + 1 dimention)

Q(X,Y) =0

is defined. Solving this equation on Yy we obtain Energy
equation

Yo = F (Xi,Yi, Xo) k,l=1,2,...,N
The corresponding Hamilton function of the System is by def:
H =Yo = H (X, Y1, Yo)
We shall consider (2 4+ 2+ 3) — dimensional version (QT, PH)
A,B — p,v=0,1,2,3, mn,, = diag{l,—1,—-1,—-1},

Xy, X, are real 4-dimensional pseudoeuclidean SO(3,1) —
vectors.



Complexification of (QT, PH)

Let us introduce the complex 4-vector Z# according definition:

ZH = X¥ 4+4YH, nu, = diag{l,-1,—-1,—1}
and define the real norm
Z"Z; = Z'n, ZH*

= |ZO|2 - |Z1|2 - |Z2|2 — |Z3|2 = inv
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Complex Lorentz Group with a real metric
(Barut Group [Barut 1964])

The group of 4 X 4 complex matrices A of transformations
Z'=AZ, Z=X-+41iY
satisfying the condition
AnAt =5, (- hermitien conjugation)
Notice: the diagonal matrices Ag and Ar € (BG)
Agp = —ily = —idiag{1,1,1,1}

and ~
Agr = —in,, = —idiag{1, -1, -1, —1}

Metric invariant (no positive-defined)
Z4Z% = | Zo|* — | Z1|* — | Za* — | Z5|* = inv

Three possibilities: | Z|? = 0, | Z|? = 0 - isotropic case

5/ 36



SU (3,1) — subgroup structure

(QTPH) s
QT == {ﬂ, Ct} = M

PH = {BE/C} = p*

B, =5/c ¢ T ':)V@
(PTQH) center "s~-. o @ . SUE)

PT = {p, Fot} = 11"
QH = {r,E/Fy} = E*
Br = f/Fo

SO¢(3, D

k,l: ]_,2,3
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Reciprocal Invariant S%; as BG metric tnvariant

o7k
YA Z“
By def: Z,, = X, + 1Y,
1 1 1 1
X[J, = —x, = 7{$03 mk:}a Yu = —DPu = 7{p0’pk}-
de e e e

Then:

dfeE sl )

je k=1 Je 16 k=1

Let x,, pu to be 4-vectors under SO, (3, 1)-transformations
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Notice! There exist alternative:

1 1
2
= i:c“a:“ + p2p Pu = |Z,|".
The natural supposition: £, and II,, are 4-vectors under
S0y (3, 1)-transformations



; Q2
Selfreciprocal Case: Sz, = 0
Quadratic form S% = Z"Z; is not positive defined
Three possibilities ZHZ | = 0, ZVZ], 2 0.
Especial interesting is:
1 1
5’123 = —zp“p“ + —Zm“mu =0
e e
Two possibilities
o

p'py = ztx, =0

(light cone, massless particles, standart clock
synchronisation)
(2]
atx, = —q3, p'p. =D,

2m.G N

e = rg(me) = 5 s Pe = MeC.

C
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BG: some kinematic outcome

(1) Reciprocal-Invariant time Tr
pe _ €

.1
Z, = T, + 13 ®y = =
7 7 0o Pu» 0 % 4GN

def _
dTr = ¢ 1,/z“z;

= c_l\/da:g —dr? + aeaz(dpg — dp?)
_ _ @2 _ 32 212 2
= dt\/1— B2 — B2+ B2B2 cos?

_ dt\/<1 - gﬁ) (1 - éfe) - (Qf X §v>2‘

where
=% B,=L Re=. ()=
*'U_C, *f_FG’ G_4GN’ —
t — is the laboratory time (comoving observer time).
« — is the angle between 7 and p.




(2) In the comoving RF:

dTr(B, = 0) = dt\/1 — 8>

There must exist an extra time retardation.

(3) cosa = +1, (gf xpB,)=0

dT), = dt\/1 - 2 \/1 - 32
(@) cosa =0, (8, xB,)? = B2 -3
Ty = dt\[1 - g% — B2 # dT),
(5) cosa = £+/2/2,
dT), = dT;
(6) The upper limit of || and |p| in the expression for dTg:

|f|mam = c/\/i9 |E|mam = 1:16'/\/5



Complex Lorentz Boost Transformations

Let us represent a BG-transformations using the following
parametrization:

r r-g ;
A(ﬁ)=<r,5* 13+%(F_1)>, ABMAT(8) =7

where 8 = gv + 'léF =wv/c+iF/Fq,
v — is a const velocity
F — is a const force, Fg = ¢* /4G N — max force

I' = detA=1(B), Is = diag{1,1,1}, B-8* — 3x3 tensor-diada.

’ . Q’+iP, . Qo + 1P,
7' = A(B)Z : <Q9+ip9)—A(B)< (3+ip°>



The simplest case B = {Bv,0,0}, Bp = {Br,0,0}

a@) =@ ( g 5 ). p=putioe

1 F
F(ﬁ) N e By = B’ BrF = —,

/1 — |g|2’ c o

F — is the constant force uniformly accelerated (noninertial)
Qo +1iFP; \ _ 1 By
-|-’i< 0 BF>}<Q0+iP0>
—Br O Q+iP

1) =(1-p8-p2)""?






Hamzltonian selfreciprocal
one-particle classical model

The selfreciprocal expression of Born interval
Sp = (=5 —r*) /ac + (5 — p*) =0

is by definition the Energy equation in the
(2 + 2 - 3)-dimensional extended Phase Space (QTPH)
[J.Synge, Class. Dyn.| and

Py +T° — (B* + Q%)

() (- ) =

is the energy surface equation. According to (QT PH)
definition H(Q, P,T) = — Py is the Hamilton function of

system. In classical version we are to choose the positive sign.
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So that Hamilton function H(Qg, Pk, T") is as follows
Tk Pk

H(QkHPk?T) = Hg - T2a Qk: = T Pk =

de Pe
where

T =x0/qe = Vet (Ve = V(M) = 20/Me)

Hy = \/P? 4+ Q2 — energy (integral of motion)

o = {Ho(P,Q), H(P,Q,T)}, =0

The Hamiltonian equations
dQ Py dPy —Qk

dr ~ /HZ -T2 dT  \/HZ -T2

possess under the spherical-symmetric initial conditions the

following solution
|Q| = sin(¢ + @min), |13| = cos(p + Pmin),
p = arcsin(T/Hp) (0 < ¢ < 7/2),

@min 7 0 — minimal angle ~ minimal value of pege



The model: massive pulsating sphere

Frequency of pulsation (comoving F'R time)

<) 3 103851
wo(me) = = ~Y .
Hym, A4m .G N Me

Pulsation Period

To(me) = 27 /wo(me) ~ me - 107385,
Spatial peak value

R(me) = 4’meGN/c2 ~ me - 107 28sm.
For me = m,, ~ 1035 gr,

T(my) ~ 10'7s ~ Hy' ~ Aty, R(my) ~ 10%sm ~ R,



Elliptic trajectory: r — p-spase

The eccentricity

2 -Q2 2(1-a)!

e(a) = — = 72
Q+’ (1 + VI a2)
o’ Q’zp’z
E(a)|a<<1g1_§=1— = L bat # 1
(@)
| 4P2 2p p <
(87 = TS = —, — ax
P<Q Q2 raeg r 0



P(Q) — dependence

.
—

. dQ P - 2 .
G=2= Spr- (g1
dr \/13’2_|_Q’2_T2 1—Q2
Q2 — T? = 1 — hyperbolic motion!
52
P2 = 9mee oy |Praz| = 1

max ~

1-— Q12na:1:

Therefore 26_2’%,“”3 =1 and Tmas = ¢/V2



The case S = A # 0

From 5123 = PP, + Q"*Q, = A > 0to
§% = S% — Ap = 0.
The Energy Integral is:

HO(P7 Q)|A3=0 — HO(P7 Q’AB)

:HOZ\/ﬁ2+Q2+AB

Pe(m) -
pe(m)7 Qe(m)a qe(m) = &
Pe(M) _

_>pe(M)a Qe(M)7 qe(M) = &9

Scale transformation of the parameter: M = m+/1 + Ap.
Consider the case Ag = 1.
Two versions: Classical and Quantum



The Newtonian Limait
Let us consider the Energy integral Hy = /P2 + Qz +1

under conditions |Q| < 1, |P| K1, |P|/|Q|<K 1.
Use the dimensional values
p2 r2 1/2
E = cp.Hy = cpe 1§+7+1

e e

r2 p? r2\ ! 1/2
= CPe 1—|—2{1—|—2(1+> }
q b

2
e e qe

1 1
~ mc? + Em'v2 + Emrzw(z)(m).

2

Omitting the “rest energy” mc*® we receive

En = 1Tnv2 + 1I,ﬂc.u(z)(m)
2 2
where I, = mr“ — moment of inertia
wo = aeg/m — angular velocity
E,.ot = mr2w§ /2~ is the kinesthetic energy of rotation.
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. . . 2 P
Canonical Quantization Sz — S

Accoding the universal condition

9 ca, h he 1,
m; = —> e =—| — = -Mp
4G N 2 4G N 4

the parameters pe, qe, Fe, te becomes Planken. The basic Born
equation can be written in the form (Fock presentation)

3
Sg|ng,n) =2 (ﬂo — Z ﬁk> |ng, n) = Ag(no,n)|ne, n),
k=1

where I:IM (= 0,1,2,3) are linear QH Osc Hamiltonians.



The discrete spectrum of (mass)?:

M?2(ng,n) = {no — (n + 1)} M2 = N(no,n) <ch>

where N(ng,n) =ng— (n+1), n = 2221 ng.
Each of n, =0,1,2,... (u = 0,1, 2, 3) independently.
Eigenstates

im0y = I Inu)s N(m) = L (n+1)(n+2)

is the degeneracy degree of [In) ~ |n1)|n2)|ng) states. In
reality the operator S is looking out as the quantum-
mechanical action operator having linear spectrum S in unit
of h:

Sy =Nh (N =1,2,3,...)



Canonical Quantization
H, (P, Q) — Hy(P, Q)

Let as consider the variables Pk, Ql in the classical Energy

integral
Ho=/P*+Q*+1

as canonically conjugated operators [Py, Q] = —idyy, the
constants pe and g in definition

- z - Pk
Q=—, P,=—

are Planken.
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The root extraction according Dirac procedure
gives (in noncovariant notations):

for DO Hamiltonian and its Supersymmetry Partner Hgo
I:I(:)l:(jj,@,l) = akpk"’ﬂ (I:F'LakQAk) =

= ﬁfﬁo = g (Pk F %ﬁQk) + B,

where oy, pr (k= 1,2,3) — 4 X 4 Dirac matrices, 3 = pg.
I:I:,FO = IrIgo(M p1) — well known Dirac Oscillator
Hamiltonian which describes the one-half Spin particle with a
Plank mass. The exact solutions of this model are well known.
But generally accepted physical interpretation of DO-model is
absent up to now.
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Thank you for your attention



