Quantum, Classical and Symmetry Aspects of Max Born Reciprocity

L.M. Tomilchik

B.I. Stepanov Institute of Physics, National Academy of Sciences of Belarus

Minsk, 16-19 May 2017

Topics

(1) Reciprocal Symmetry and Maximum Tension Principle
(2) Maximum Force and Newton gravity
(3) Extended Phase Space (QTPH) as a Basic Manifold
(4) Complex Lorentz group with Real Metric as Group of Reciprocal Symmetry
(5) One-Particle Quasi-Newtonian Reciprocal-Invariant Hamiltonian dynamics
(6) Canonic Quantization: Dirac Oscillator as Model of Fermion with a Plank mass

Born Reciprocity version

(1) Reciprocity Transformations (RT):

$$
\frac{x_{\mu}}{q_{e}} \rightarrow \frac{p_{\mu}}{p_{e}}, \quad \frac{p_{\mu}}{p_{e}} \rightarrow-\frac{x_{\mu}}{q_{e}} .
$$

(2) Lorentz and Reciprocal Invariant quadratic form:
$S_{B}^{2}=\frac{1}{q_{e}^{2}} x^{\mu} x_{\mu}+\frac{1}{p_{e}^{2}} p^{\mu} p_{\mu}, \quad \eta_{\mu \nu}=\operatorname{diag}\{1,-1,-1,-1\}$
(3) $x_{\mu}, \boldsymbol{p}_{\mu}$ are quantum-mechanical canonic operators:

$$
\left[x_{\mu}, p_{\nu}\right]=i \hbar \eta_{\mu \nu}
$$

(4) Phenomenological parameter according definition $p_{e}=M c$ so that

$$
\left.\boldsymbol{q}_{e}=\hbar / M c=\boldsymbol{\Lambda}_{\boldsymbol{c}} \quad \text { (Compton length }\right) .
$$

The mass \boldsymbol{M} is a free model parameter.
© Two dimensional constants $\boldsymbol{q}_{\boldsymbol{e}}$ [length], $\boldsymbol{p}_{\boldsymbol{e}}$ [momentum] connected by corellation:

$$
\boldsymbol{q}_{e} \boldsymbol{p}_{e}=\hbar \quad \text { (Plank constant). }
$$

Relativistic Oscillator Equation (ROE)

Selfreciprocal-Invariant Quantum mechanical Equation:

$$
\left(-\frac{\partial^{2}}{\partial \xi^{\mu} \partial \xi_{\mu}}+\xi^{\mu} \xi_{\mu}\right) \Psi(\xi)=\lambda_{B} \Psi(\xi)
$$

where $\boldsymbol{\xi}^{\mu}=\boldsymbol{x}^{\boldsymbol{\mu}} / \boldsymbol{\Lambda}_{\boldsymbol{c}}$.
The (ROE) symmetry $\approx \boldsymbol{U}(\mathbf{3}, \mathbf{1})$. There are solution corresponding linear discrete mass spectrum.

Maximum Tension Principle (MTP)

The space-time and momentum variables are to be just the same dimentions of a quantity. It is necessary to have the universal constant with dimention: momentum/length, or equivalently: mass/time, energy/time, momentum/time. In reality: MTP [Gibbons, 2002]
Gibbons Limit:

$$
\begin{gathered}
\text { Maximum force } \quad F_{\max }=\left(\frac{d p}{d t}\right)_{\max }=\frac{c^{4}}{4 G_{N}}=F_{G} \\
\text { Maximum power } \quad P_{\max }=\left(\frac{d E}{d t}\right)_{\max }=\frac{c^{5}}{4 G_{N}}=P_{G}
\end{gathered}
$$ [momentum]/[length] - Universal constant

$$
æ_{0}=\frac{p_{e}}{q_{e}}=\frac{c^{3}}{4 G_{N}} \quad[\mathrm{LMT}, 1974,2003]
$$

It is evident: $æ_{0}=\boldsymbol{c}^{-1} \boldsymbol{F}_{\max }=\boldsymbol{c}^{-\mathbf{2}} \boldsymbol{P}_{\max }$. All these values are essentially classic (does not contain Plank constant \hbar).

Born Reciprocity and Gibbons Limit

Let the parameter \boldsymbol{a} to be some fixed (nonzero!) value of action \boldsymbol{S}. We replace initial Born's relation

$$
\boldsymbol{q}_{e} \boldsymbol{p}_{e}=\hbar \quad \text { by } \quad \pi \boldsymbol{q}_{e} \boldsymbol{p}_{e}=\boldsymbol{a}
$$

without beforehand action discretness supposition. We demand the nonzero area $\boldsymbol{S}_{\boldsymbol{f i x}}=\boldsymbol{\pi} \boldsymbol{q}_{e} \boldsymbol{p}_{\boldsymbol{e}}$ of the phase plane only. The second suggestion is:

$$
æ_{0}=\frac{p_{e}}{q_{e}}=\frac{c^{3}}{4 G_{N}} \quad \text { (universal constant). }
$$

Now the parameters $\boldsymbol{q}_{\boldsymbol{e}}, \boldsymbol{p}_{\boldsymbol{e}}$ are defined separately

$$
q_{e}=\sqrt{\frac{a}{\pi æ}}, \quad p_{e}=\sqrt{\frac{a æ}{\pi}}
$$

Evidently: the phenomenological constants $\boldsymbol{E}_{\boldsymbol{e}}=\boldsymbol{p}_{\boldsymbol{e}} \boldsymbol{c}$ [Energy] and $\boldsymbol{t}_{\boldsymbol{e}}=\boldsymbol{c}^{-1} \boldsymbol{q}_{\boldsymbol{e}}$ [time] satisfy the conditions

$$
E_{e} t_{e}=\pi a, \quad \frac{E_{e}}{t_{e}}=c^{2} æ=\frac{c^{5}}{4 G_{N}}
$$

Under Born's parametrization

$$
p_{e}=M c, \quad q_{e}=\frac{2 M G_{N}}{c^{2}}=r_{g}(M)-\text { gravitational radius }
$$

General mass-action correlation

$$
M^{2}=\frac{a c}{4 \pi G_{N}}
$$

It is valid as in classical as in quantum case. Under supposition when $\boldsymbol{a}_{\text {min }}=\boldsymbol{h}$ we receive

$$
M^{2}=\frac{h c}{4 \pi G_{N}}=\frac{1}{2} M_{P l}^{2}, \quad M_{P l}=\sqrt{\frac{\hbar c}{G_{N}}} \text { - Plank mass }
$$

Maximum Force and Modified Newton Gravity

$$
\begin{aligned}
& (\mathrm{NG}): \quad|\underline{f}|=G_{N} \frac{m M}{r^{2}} \equiv \frac{c^{4}}{4 G_{N}} \frac{2 m G_{N}}{c^{2}} \frac{2 M G_{N}}{c^{2}} \frac{1}{r^{2}} \\
& \quad=F_{G} \frac{r_{g} R_{g}}{r^{2}} \equiv F_{G} \frac{r_{0}^{2}}{r^{2}} \quad\left(r \geqslant 0, \quad r_{0}=\sqrt{r_{g} R_{g}}\right)
\end{aligned}
$$

(ModNG): $\left|f_{N}^{m o d}\right|=F_{G} \frac{r_{0}^{2}}{r^{2}} \quad\left(r \geqslant r_{0}\right), \quad\left|f_{N}^{\bmod }\right|_{r=r_{0}}^{m a x}=F_{G}$
The corresponding gravitational potential Energy

$$
U_{g r}^{m o d}=-F_{G} \frac{r_{0}^{2}}{r}
$$

possess a minimum under $\boldsymbol{r}=\boldsymbol{r}_{\mathbf{0}}$
$U_{g r}^{m o d}(\min)=-F_{G} r_{0}=-\frac{c^{4}}{4 G_{N}} \frac{2 G_{N}}{c^{2}} \sqrt{m M}=-\frac{c^{2}}{2} \sqrt{m M}$
We have dealing (instead of point-like masses) with a pair spacely extended simple massive gravitating objects like the elastic balls or drops with a high surface tension.

The whole energy such a "binary" system is as follows:

$$
\begin{gathered}
E(M, m)=M c^{2}+m c^{2}-\frac{1}{2} \sqrt{m M} c^{2} \\
\quad=(M+m) c^{2}\left\{1-\frac{1}{2} \sqrt{\frac{\mu}{M+m}}\right\}
\end{gathered}
$$

where $\boldsymbol{\mu}=\boldsymbol{m} \boldsymbol{M} /(\boldsymbol{m}+\boldsymbol{M})$.
$M c^{2}, \quad m c^{2}, \quad(M+m) c^{2}-$ rest energy
$\Delta E=\frac{1}{2} \sqrt{\mu(M+m)} c^{2}=\frac{1}{2} \sqrt{m M} c^{2}-$ energy corresponding the "mass defect" $\Delta m=\frac{1}{2} \sqrt{m M}$

"Gravitational fusion" picture

$$
\begin{gathered}
\lambda=\frac{[\text { eliminated energy }]}{[\text { rest energy }]}=\frac{\Delta E}{(M+m) c^{2}} \\
=\frac{\sqrt{m M}}{2(M+m)}=\frac{1}{2} \frac{\sqrt{\delta}}{1+\delta},
\end{gathered}
$$

where

$$
\begin{gathered}
\delta=\frac{m}{M}, \quad \delta_{0} \leqslant \delta \leqslant 1, \quad \delta_{0}=\frac{M_{\min }}{M_{\max }} \\
\text { Maximum } \quad \lambda_{\max }=\frac{\Delta E_{\text {eliminated }}}{E_{\text {rest }}}=\frac{1}{4} \\
\text { under } \quad \delta=1 \quad(m=M)
\end{gathered}
$$

Such a "fusion" of two equal rest mass \boldsymbol{M} lead to mass
$=\mathbf{3} \boldsymbol{M} / \mathbf{2}$, the Energy $\boldsymbol{\Delta} \boldsymbol{E}=\boldsymbol{M} \boldsymbol{c}^{\mathbf{2}} / \mathbf{2}$ eliminate (3:1).

Extended Phase Space as a Basic Manifold

Space of states (QTP) and Energy (H) (sec [J. Synge, 1962]) in general: $\mathbf{2}+\mathbf{2 N}$ dimensions. The metric is

$$
\eta_{A B}=\operatorname{diag}\{\overbrace{1,-1,-1, \ldots,-1}^{N}\}
$$

$(\boldsymbol{X}, \boldsymbol{Y})$ - pair of conjugated pseudoeuclidean vectors $\boldsymbol{X}_{\boldsymbol{A}}, \boldsymbol{Y}_{\boldsymbol{A}}$, $A, B=\mathbf{0}, \mathbf{1}, \ldots, N(N+1$ dimention $)$.
The Poisson brackets for $\varphi(\boldsymbol{X}, \boldsymbol{Y}), f(\boldsymbol{X}, \boldsymbol{Y})$,

$$
\{\varphi, f\}_{A, B}=\sum_{k=0}^{N}\left\{\frac{\partial \varphi}{\partial X^{k}} \frac{\partial f}{\partial Y_{k}}-\frac{\partial \varphi}{\partial Y^{k}} \frac{\partial f}{\partial X_{k}}\right\}
$$

so that

$$
\left\{X_{A}, Y_{A}\right\}_{A, B}=\eta_{A B}
$$

Dynamic System in $(\boldsymbol{Q T}, \boldsymbol{P} \boldsymbol{H})$ is defined, when the Energy Surface $(\mathbf{2 N}+\mathbf{1}$ dimention)

$$
\Omega(X, Y)=0
$$

is defined. Solving this equation on $\boldsymbol{Y}_{\mathbf{0}}$ we obtain Energy equation

$$
Y_{0}=F\left(X_{k}, Y_{l}, X_{0}\right) \quad k, l=1,2, \ldots, N
$$

The corresponding Hamilton function of the System is by def:

$$
\mathcal{H} \equiv Y_{0}=\mathcal{H}\left(X_{k}, Y_{l}, Y_{0}\right)
$$

We shall consider $(\mathbf{2}+\mathbf{2} \cdot \mathbf{3})$ - dimensional version $(\boldsymbol{Q T}, \boldsymbol{P} \boldsymbol{H})$

$$
A, B \rightarrow \mu, \nu=0,1,2,3, \quad \eta_{\mu \nu}=\operatorname{diag}\{1,-1,-1,-1\}
$$

$\boldsymbol{X}_{\boldsymbol{\mu}}, \boldsymbol{X}_{\mu}$ are real 4-dimensional pseudoeuclidean $\boldsymbol{S O}(\mathbf{3}, \mathbf{1})$ vectors.

Complexification of $(Q T, \boldsymbol{P H})$

Let us introduce the complex 4 -vector $\boldsymbol{Z}^{\boldsymbol{\mu}}$ according definition:

$$
Z^{\mu}=X^{\mu}+i Y^{\mu}, \quad \eta_{\mu \nu}=\operatorname{diag}\{1,-1,-1,-1\}
$$

and define the real norm

$$
\begin{gathered}
Z^{\mu} Z_{\mu}^{*}=Z^{\mu} \eta_{\mu \nu} Z^{\mu *} \\
=\left|Z_{0}\right|^{2}-\left|Z_{1}\right|^{2}-\left|Z_{2}\right|^{2}-\left|Z_{3}\right|^{2}=\mathrm{inv}
\end{gathered}
$$

Complex Lorentz Group with a real metric (Barut Group [Barut 1964])
The group of $\mathbf{4} \times \mathbf{4}$ complex matrices $\boldsymbol{\Lambda}$ of transformations

$$
Z^{\prime}=\Lambda Z, \quad Z=X+i Y
$$

satisfying the condition

$$
\boldsymbol{\Lambda} \boldsymbol{\eta} \boldsymbol{\Lambda}^{\dagger}=\boldsymbol{\eta}, \quad(\dagger-\text { hermitien conjugation })
$$

Notice: the diagonal matrices $\boldsymbol{\Lambda}_{\boldsymbol{R}}$ and $\overline{\boldsymbol{\Lambda}}_{\boldsymbol{R}} \in(\boldsymbol{B G})$

$$
\Lambda_{R}=-i I_{4}=-i \operatorname{diag}\{1,1,1,1\}
$$

and

$$
\bar{\Lambda}_{R}=-i \eta_{\mu \nu}=-i \operatorname{diag}\{1,-1,-1,-1\}
$$

Metric invariant (no positive-defined)

$$
Z^{\mu} Z_{\mu}^{*}=\left|Z_{0}\right|^{2}-\left|Z_{1}\right|^{2}-\left|Z_{2}\right|^{2}-\left|Z_{3}\right|^{2}=\operatorname{inv}
$$

Three possibilities: $|Z|^{2} \gtrless 0,|Z|^{2}=\mathbf{0}$ - isotropic case

$S U(3,1)$ - subgroup structure

(QTPH)
$\operatorname{SO}_{v i}(\mathbf{3}, 1)$
$Q T=\{\underline{r}, c t\}=x^{\mu}$
$P H=\{\underline{p}, E / c\}=p^{\mu}$
$\overrightarrow{\boldsymbol{\beta}}_{v}=\overrightarrow{\boldsymbol{v}} / \boldsymbol{c}$
(PTQH)

$$
P T=\left\{\underline{p}, \boldsymbol{F}_{0} t\right\}=\boldsymbol{\Pi}^{\mu}
$$

$$
Q H=\left\{\underline{r}, E / F_{0}\right\}=\Xi^{\mu}
$$

$$
\overrightarrow{\boldsymbol{\beta}}_{f}=\vec{f} / \boldsymbol{F}_{\mathbf{0}}
$$

$$
F_{0}=F_{\max }
$$

Reciprocal Invariant S_{B}^{2} as $B G$ metric invariant $Z^{\mu} Z_{\mu}^{*}$

By def: $\boldsymbol{Z}_{\mu}=\boldsymbol{X}_{\mu}+\boldsymbol{i} \boldsymbol{Y}_{\boldsymbol{\mu}}$

$$
X_{\mu}=\frac{1}{q_{e}} x_{\mu}=\frac{1}{q_{e}}\left\{x_{0}, x_{k}\right\}, \quad Y_{\mu}=\frac{1}{p_{e}} p_{\mu}=\frac{1}{p_{e}}\left\{p_{0}, p_{k}\right\} .
$$

Then:

$$
\begin{gathered}
S_{B}^{2}=\frac{1}{q_{e}^{2}}\left(x_{0}^{2}-\sum_{k=1}^{3} x_{k}^{2}\right)+\frac{1}{p_{e}^{2}}\left(p_{0}^{2}-\sum_{k=1}^{3} p_{k}^{2}\right)= \\
=\frac{x_{0}^{2}}{q_{e}^{2}}+\frac{p_{0}^{2}}{p_{e}^{2}}-\sum_{k=1}^{3}\left(\frac{x_{k}^{2}}{q_{e}^{2}}+\frac{p_{k}^{2}}{p_{e}^{2}}\right)=\left|Z_{0}\right|^{2}-\sum_{k=1}^{3}\left|Z_{k}\right|^{2}=Z^{\mu} Z_{\mu}^{*}
\end{gathered}
$$

Let $\boldsymbol{x}_{\mu}, \boldsymbol{p}_{\mu}$ to be 4 -vectors under $\boldsymbol{S O} \boldsymbol{O}_{\boldsymbol{v}}(\mathbf{3}, \mathbf{1})$-transformations

Notice! There exist alternative:

$$
\bar{Z}_{\mu}=\bar{X}_{\mu}+i \bar{Y}_{\mu}
$$

where

$$
\bar{X}_{\mu}=\Xi_{\mu} \stackrel{\text { def }}{=}\left\{\frac{x_{0}}{q_{e}}, \frac{p_{k}}{p_{e}}\right\}, \quad \bar{Y}_{\mu}=\Pi_{\mu} \stackrel{\text { def }}{=}\left\{\frac{p_{0}}{p_{e}}, \frac{x_{k}}{q_{e}}\right\}
$$

It is evident:

$$
\begin{gathered}
\left|\bar{Z}_{\mu}\right|^{2}=\Xi^{\mu} \Xi_{\mu}+\Pi^{\mu} \Pi_{\mu}=\frac{x_{0}^{2}}{q_{e}^{2}}-\sum_{k=1}^{3} \frac{p_{k}^{2}}{p_{e}^{2}}+\frac{p_{0}^{2}}{p_{e}^{2}}-\sum_{k=1}^{3} \frac{x_{k}^{2}}{q_{e}^{2}}= \\
=\frac{1}{q_{e}^{2}} x^{\mu} x_{\mu}+\frac{1}{p_{e}^{2}} p^{\mu} p_{\mu}=\left|Z_{\mu}\right|^{2}
\end{gathered}
$$

The natural supposition: $\boldsymbol{\Xi}_{\boldsymbol{\mu}}$ and $\boldsymbol{\Pi}_{\boldsymbol{\mu}}$ are 4 -vectors under $S O_{f}(3,1)$-transformations

Selfreciprocal Case: $S_{B}^{2}=0$

Quadratic form $\boldsymbol{S}_{\boldsymbol{B}}^{2}=\boldsymbol{Z}^{\mu} \boldsymbol{Z}_{\mu}^{*}$ is not positive defined Three possibilities $\boldsymbol{Z}^{\mu} \boldsymbol{Z}_{\mu}^{*}=\mathbf{0}, \boldsymbol{Z}^{\mu} \boldsymbol{Z}_{\mu}^{*} \gtrless \mathbf{0}$.
Especial interesting is:

$$
S_{B}^{2}=\frac{1}{p_{e}^{2}} p^{\mu} p_{\mu}+\frac{1}{q_{e}^{2}} x^{\mu} x_{\mu}=0
$$

Two possibilities
(1)

$$
p^{\mu} p_{\mu}=x^{\mu} x_{\mu}=0
$$

(light cone, massless particles, standart clock synchronisation)
(2)

$$
\begin{gathered}
x^{\mu} x_{\mu}=-q_{e}^{2}, \quad p^{\mu} p_{\mu}=p_{e}^{2} \\
q_{e}=r_{g}\left(m_{e}\right)=\frac{2 m_{e} G_{N}}{c^{2}}, \quad p_{e}=m_{e} c
\end{gathered}
$$

BG: some kinematic outcome

(1) Reciprocal-Invariant time $\boldsymbol{T}_{\boldsymbol{R}}$

$$
\begin{gathered}
z_{\mu}=x_{\mu}+i æ_{0}^{-1} p_{\mu}, \quad \not æ_{0}=\frac{p_{e}}{q_{e}}=\frac{c^{3}}{4 G_{N}} \\
d T_{R} \stackrel{\text { def }}{=} c^{-1} \sqrt{z^{\mu} z_{\mu}^{*}} \\
=c^{-1} \sqrt{d x_{0}^{2}-d \underline{r}^{2}+æ_{0}^{-2}\left(d p_{0}^{2}-d \underline{p}^{2}\right)} \\
=d t \sqrt{1-\underline{\beta}_{v}^{2}-\underline{\beta}_{f}^{2}+\underline{\beta}_{v}^{2} \underline{\beta}_{f}^{2} \cos ^{2} \alpha} \\
=d t \sqrt{\left(1-\underline{\beta}_{v}^{2}\right)\left(1-\underline{\beta}_{f}^{2}\right)-\left(\underline{\beta}_{f} \times \underline{\beta}_{v}\right)^{2}}
\end{gathered}
$$

where

$$
\underline{\beta}_{v}=\frac{\dot{\underline{r}}}{c}, \quad \underline{\beta}_{f}=\frac{\dot{\underline{p}}}{F_{G}}, \quad F_{G}=\frac{c^{4}}{4 G_{N}}, \quad(\cdot)=\frac{d}{d t}
$$

\boldsymbol{t} - is the laboratory time (comoving observer time).
$\boldsymbol{\alpha}$ - is the angle between $\underline{\underline{\boldsymbol{r}}}$ and $\underline{\boldsymbol{p}}$.
(2) In the comoving $\boldsymbol{R F}$:

$$
d T_{R}\left(\beta_{v}=0\right)=d t \sqrt{1-\underline{\beta}_{v}^{2}}
$$

There must exist an extra time retardation.
(3) $\cos \alpha= \pm 1, \quad\left(\underline{\beta}_{f} \times \underline{\boldsymbol{\beta}}_{\boldsymbol{v}}\right)=0$

$$
d T_{R}^{\|}=d t \sqrt{1-\underline{\beta}_{v}^{2}} \sqrt{1-\underline{\beta}_{f}^{2}}
$$

(4) $\cos \alpha=0, \quad\left(\underline{\beta}_{f} \times \underline{\beta}_{v}\right)^{2}=\underline{\beta}_{f}^{2} \cdot \underline{\beta}_{v}^{2}$

$$
d T_{R}^{\perp}=d t \sqrt{1-\underline{\beta}_{v}^{2}-\underline{\beta}_{f}^{2}} \neq d T_{R}^{\|}
$$

(5) $\cos \alpha= \pm \sqrt{2} / 2$,

$$
d T_{R}^{\|}=d T_{R}^{\perp}
$$

(6) The upper limit of $|\underline{\dot{\boldsymbol{r}}}|$ and $|\underline{\boldsymbol{p}}|$ in the expression for $\boldsymbol{d} \boldsymbol{T}_{\boldsymbol{R}}$:

$$
|\underline{\dot{r}}|_{\max }=c / \sqrt{2}, \quad|\underline{\dot{p}}|_{\max }=F_{G} / \sqrt{2}
$$

Complex Lorentz Boost Transformations

Let us represent a $\boldsymbol{B} \boldsymbol{G}$-transformations using the following parametrization:

$$
\Lambda(\beta)=\left(\begin{array}{cc}
\Gamma & \underline{\Gamma} \cdot \underline{\beta} \\
\Gamma \cdot \underline{\beta}^{*} & I_{3}+\frac{\underline{\beta} \cdot \beta^{*}}{\overline{|\underline{\beta}|^{2}}}(\Gamma-1)
\end{array}\right), \quad \Lambda(\beta) \eta \Lambda^{\dagger}(\beta)=\eta
$$

where $\underline{\beta}=\underline{\beta}_{v}+i \underline{\beta}_{F}=\underline{v} / c+i \underline{\boldsymbol{F}} / \boldsymbol{F}_{\boldsymbol{G}}$,
$\underline{\boldsymbol{v}}$ - is a const velocity
$\underline{\boldsymbol{F}}$ - is a const force, $\boldsymbol{F}_{\boldsymbol{G}}=\boldsymbol{c}^{\boldsymbol{4}} / \boldsymbol{4}_{\boldsymbol{G}}^{\boldsymbol{N}}$ - max force
$\boldsymbol{\Gamma}=\operatorname{det} \boldsymbol{\Lambda}^{-\mathbf{1}}(\boldsymbol{\beta}), \quad \boldsymbol{I}_{\mathbf{3}}=\operatorname{diag}\{\mathbf{1}, \mathbf{1}, \mathbf{1}\}, \quad \underline{\boldsymbol{\beta}} \cdot \underline{\boldsymbol{\beta}}^{\boldsymbol{*}}-\mathbf{3} \times \mathbf{3}$ tensor-diada.

$$
Z^{\prime}=\Lambda(\beta) Z: \quad\binom{Q_{0}^{\prime}+i P_{0}^{\prime}}{\underline{Q}^{\prime}+i \underline{P}^{\prime}}=\Lambda(\beta)\binom{Q_{0}+i P_{0}}{\underline{Q}+i \underline{P}}
$$

The simplest case $\underline{\boldsymbol{\beta}}_{\boldsymbol{v}}=\left\{\boldsymbol{\beta}_{\boldsymbol{v}}, \mathbf{0}, \mathbf{0}\right\}, \underline{\boldsymbol{\beta}}_{\boldsymbol{F}}=\left\{\boldsymbol{\beta}_{\boldsymbol{F}}, \mathbf{0}, \mathbf{0}\right\}$

$$
\begin{aligned}
& \Lambda(\beta)=\Gamma(\beta)\left(\begin{array}{cc}
1 & \beta \\
\beta^{*} & 1
\end{array}\right), \quad \beta=\beta_{v}+i \beta_{F} \\
& \Gamma(\beta)=\frac{1}{\sqrt{1-|\underline{\beta}|^{2}}}, \quad \beta_{v}=\frac{v}{c}, \quad \beta_{F}=\frac{F}{F_{G}}
\end{aligned}
$$

\boldsymbol{F} - is the constant force uniformly accelerated (noninertial) $\boldsymbol{F R}$.

$$
\begin{gathered}
\binom{Q_{0}^{\prime}+i P_{0}^{\prime}}{Q^{\prime}+i P^{\prime}}=\Gamma(\beta)\left\{\left(\begin{array}{cc}
1 & \beta_{v} \\
\beta_{v}^{*} & 1
\end{array}\right)\right. \\
\left.+i\left(\begin{array}{cc}
0 & \beta_{F} \\
-\beta_{F} & 0
\end{array}\right)\right\}\binom{Q_{0}+i P_{0}}{Q+i P} \\
\Gamma(\beta)=\left(1-\beta_{v}^{2}-\beta_{F}^{2}\right)^{-1 / 2}
\end{gathered}
$$

$$
\begin{aligned}
& \beta_{F}=0 \\
& \binom{c t^{\prime}}{x^{\prime}} \\
& =\gamma_{v}\left(\begin{array}{cc}
1 & \boldsymbol{\beta}_{v} \\
\boldsymbol{\beta}_{v} & 1
\end{array}\right)\binom{c t}{x}, \quad=\gamma_{F}\left(\begin{array}{cc}
1 & -\boldsymbol{\beta}_{\boldsymbol{F}} \\
-\boldsymbol{\beta}_{F} & 1
\end{array}\right)\binom{t}{p / \boldsymbol{F}_{G}}, \\
& \binom{E^{\prime} / c}{\boldsymbol{p}^{\prime}} \\
& =\gamma_{v}\left(\begin{array}{cc}
1 & \boldsymbol{\beta}_{v} \\
\boldsymbol{\beta}_{v} & 1
\end{array}\right)\binom{\boldsymbol{E} / \boldsymbol{c}}{\boldsymbol{p}}, \quad=\gamma_{\boldsymbol{F}}\left(\begin{array}{cc}
1 & -\boldsymbol{\beta}_{\boldsymbol{F}} \\
-\boldsymbol{\beta}_{\boldsymbol{F}} & \mathbf{1}
\end{array}\right)\binom{\boldsymbol{E}}{\boldsymbol{F}_{G} \boldsymbol{x}}, \\
& \gamma_{v}=1 / \sqrt{1-\beta_{v}^{2}} \\
& \dot{x}^{\prime}=\frac{\dot{x}+V}{1+\dot{x} V / c^{2}}: \\
& \boldsymbol{\beta}_{v}^{\prime}=\frac{\boldsymbol{\beta}_{v}+\beta_{V}}{1+\boldsymbol{\beta}_{\boldsymbol{v}} \boldsymbol{\beta}_{V}} \\
& \beta_{v}=0, \quad F_{G}=\frac{c^{4}}{4 G_{N}} \\
& \binom{t^{\prime}}{p^{\prime} / F_{G}} \\
& \begin{array}{c}
=\gamma_{F}\left(\begin{array}{c}
\binom{E^{\prime}}{F_{G} x^{\prime}} \\
-\beta_{F} \\
-\boldsymbol{\beta}_{F}
\end{array}\right)\binom{E}{F_{G} x}, \\
\gamma_{F}=1 / \sqrt{1-\beta_{F}^{2}}
\end{array} \\
& \dot{p}^{\prime}=\frac{\dot{p}-F}{1-\dot{p} F / F_{G}^{2}}: \\
& \beta_{f}^{\prime}=\frac{\beta_{f}-\beta_{F}}{1-\beta_{f} \beta_{F}}, \\
& \dot{p}=\frac{d p}{d t}=f, \quad \frac{d E}{d x}=-f
\end{aligned}
$$

Hamiltonian selfreciprocal one-particle classical model

The selfreciprocal expression of Born interval

$$
S_{B}^{2}=\left(x_{0}^{2}-\underline{r}^{2}\right) / q_{e}^{2}+\left(p_{0}^{2}-\underline{p}^{2}\right)=0
$$

is by definition the Energy equation in the
$(\mathbf{2}+\mathbf{2} \cdot \mathbf{3})$-dimensional extended Phase Space (QTPH)
[J.Synge, Class. Dyn.] and

$$
\begin{gathered}
P_{0}^{2}+T^{2}-\left(\underline{P}^{2}+\underline{Q}^{2}\right) \\
=\left(P_{0}+\sqrt{\underline{P}^{2}+\underline{Q}^{2}}\right)\left(P_{0}-\sqrt{\underline{P}^{2}+\underline{Q}^{2}}\right)=0
\end{gathered}
$$

is the energy surface equation. According to $(\boldsymbol{Q T P H})$ definition $\mathcal{H}(\underline{\boldsymbol{Q}}, \underline{\boldsymbol{P}}, \boldsymbol{T}) \equiv-\boldsymbol{P}_{\mathbf{0}}$ is the Hamilton function of system. In classical version we are to choose the positive sign.

So that Hamilton function $\mathcal{H}\left(\boldsymbol{Q}_{\boldsymbol{k}}, \boldsymbol{P}_{\boldsymbol{k}}, \boldsymbol{T}\right)$ is as follows

$$
\mathcal{H}\left(Q_{k}, P_{k}, T\right)=\sqrt{H_{0}^{2}-T^{2}}, \quad Q_{k}=\frac{x_{k}}{q_{e}}, \quad P_{k}=\frac{p_{k}}{p_{e}},
$$

where

$$
\begin{gathered}
T=x_{0} / q_{e}=v_{e} t \quad\left(v_{e}=v\left(m_{e}\right)=æ_{0} / m_{e}\right) \\
H_{0}=\sqrt{P_{k}^{2}+Q_{k}^{2}}-\text { energy }(\text { integral of motion }) \\
\frac{d H_{0}}{d T}=\left\{H_{0}(\underline{P}, \underline{Q}), \mathcal{H}(\underline{P}, \underline{Q}, T)\right\}_{q, p}=0
\end{gathered}
$$

The Hamiltonian equations

$$
\frac{d Q_{k}}{d T}=\frac{P_{k}}{\sqrt{H_{0}^{2}-T^{2}}}, \quad \frac{d P_{k}}{d T}=\frac{-Q_{k}}{\sqrt{H_{0}^{2}-T^{2}}}
$$

possess under the spherical-symmetric initial conditions the following solution

$$
\begin{gathered}
|\vec{Q}|=\sin \left(\varphi+\varphi_{\min }\right), \quad|\vec{P}|=\cos \left(\varphi+\varphi_{\min }\right) \\
\varphi=\arcsin \left(T / H_{0}\right) \quad(0<\varphi<\pi / 2) \\
\varphi_{m i n} \neq 0-\operatorname{minimal} \text { angle } \sim \text { minimal value of } \quad p_{e} \boldsymbol{q}_{e}
\end{gathered}
$$

The model: massive pulsating sphere

Frequency of pulsation (comoving $\boldsymbol{F} \boldsymbol{R}$ time)

$$
\omega_{0}\left(m_{e}\right)=\frac{æ_{0}}{H_{0} m_{e}}=\frac{c^{3}}{4 m_{e} G_{N}} \sim \frac{10^{38_{\mathrm{s}}-1}}{m_{e}}
$$

Pulsation Period

$$
T_{0}\left(m_{e}\right)=2 \pi / \omega_{0}\left(m_{e}\right) \sim m_{e} \cdot 10^{-38} \mathrm{~S}
$$

Spatial peak value

$$
R\left(m_{e}\right)=4 m_{e} G_{N} / c^{2} \sim m_{e} \cdot 10^{-28} \mathrm{sm} .
$$

For $\boldsymbol{m}_{\boldsymbol{e}}=\boldsymbol{m}_{\boldsymbol{u}} \sim \mathbf{1 0}^{\mathbf{5 5}} \mathrm{gr}$,

$$
T\left(m_{u}\right) \sim 10^{17} \mathrm{~S} \sim H_{0}^{-1} \sim \Delta t_{u}, \quad R\left(m_{u}\right) \sim 10^{27} \mathrm{sm} \sim R_{u}
$$

Elliptic trajectory: $\boldsymbol{r}-\boldsymbol{p}$-spase

The eccentricity

$$
\begin{gathered}
\varepsilon(\alpha)=\frac{\sqrt{\vec{Q}_{+}^{2}-\vec{Q}_{-}^{2}}}{\left|\vec{Q}_{+}\right|}=\frac{\sqrt{2}\left(1-\alpha^{2}\right)^{1 / 4}}{\left(1+\sqrt{1-\alpha^{2}}\right)^{1 / 2}} \\
\left.\varepsilon(\alpha)\right|_{\alpha \ll 1} \cong 1-\frac{\alpha^{2}}{8}=1-\frac{\vec{Q}^{2} \vec{P}^{2}}{2\left(\vec{Q}^{2}+\vec{P}^{2}\right)^{2}}, \quad \text { bat } \neq 1 . \\
\left.\alpha^{2}\right|_{P \ll Q} \cong \frac{4 \vec{P}^{2}}{\vec{Q}^{2}}=\frac{2 p}{r æ_{0}}, \quad \frac{p}{r} \ll æ_{0}
\end{gathered}
$$

$P(\dot{Q})$ - dependence

$$
\begin{gathered}
\dot{\vec{Q}}=\frac{d \vec{Q}}{d T}=\frac{\vec{P}}{\sqrt{\vec{P}^{2}+\vec{Q}^{2}-T^{2}}} \rightarrow \vec{P}^{2}=\frac{\dot{\vec{Q}}^{2}}{1-\dot{\vec{Q}}^{2}}\left(\vec{Q}^{2}-T^{2}\right) \\
\vec{Q}^{2}-T^{2}=1-\text { hyperbolic motion! } \\
\vec{P}_{\max }^{2}=\frac{\dot{\vec{Q}}_{\max }^{2}}{1-\dot{\vec{Q}}_{\max }^{2}} . \text { But }\left|\vec{P}_{\max }\right|=1
\end{gathered}
$$

Therefore $2 \dot{\vec{Q}}_{\text {max }}^{2}=1$ and $\dot{r}_{\max }=c / \sqrt{2}$

The case $S_{B}^{2}=\Lambda_{B} \neq 0$

From $S_{B}^{2}=P^{\mu} P_{\mu}+Q^{\mu} Q_{\mu}=\Lambda_{B}>0$ to $\bar{S}_{B}^{2}=S_{B}^{2}-\Lambda_{B}=0$.
The Energy Integral is:

$$
\begin{gathered}
\left.H_{0}(P, Q)\right|_{\Lambda_{B}=0} \rightarrow H_{0}\left(P, Q, \Lambda_{B}\right) \\
=H_{0}=\sqrt{\vec{P}^{2}+\vec{Q}^{2}+\Lambda_{B}} \\
p_{e}(m), \quad q_{e}(m), \quad \frac{p_{e}(m)}{q_{e}(m)}=æ_{0} \\
\rightarrow p_{e}(M), \quad q_{e}(M), \quad \frac{p_{e}(M)}{q_{e}(M)}=æ_{0}
\end{gathered}
$$

Scale transformation of the parameter: $\boldsymbol{M}=\boldsymbol{m} \sqrt{\mathbf{1 + \Lambda _ { B }}}$.
Consider the case $\boldsymbol{\Lambda}_{\boldsymbol{B}}=\mathbf{1}$.
Two versions: Classical and Quantum

The Newtonian Limit

Let us consider the Energy integral $\boldsymbol{H}_{0}=\sqrt{\underline{P}^{2}+\underline{Q}^{2}+1}$ under conditions $|\underline{Q}| \ll 1, \quad|\underline{P}| \ll 1, \quad|\underline{P}| /|\underline{Q}| \ll 1$. Use the dimensional values

$$
\begin{gathered}
E=c p_{e} H_{0}=c p_{e}\left(\frac{p^{2}}{p_{e}^{2}}+\frac{r^{2}}{q_{e}^{2}}+1\right)^{1 / 2} \\
=c p_{e} \sqrt{1+\frac{r^{2}}{q_{e}^{2}}}\left\{1+\frac{p^{2}}{p_{e}^{2}}\left(1+\frac{r^{2}}{q_{e}^{2}}\right)^{-1}\right\}^{1 / 2} \\
\approx m c^{2}+\frac{1}{2} m v^{2}+\frac{1}{2} m r^{2} \omega_{0}^{2}(m) .
\end{gathered}
$$

Omitting the "rest energy" $\boldsymbol{m} \boldsymbol{c}^{\mathbf{2}}$ we receive

$$
E_{N}=\frac{1}{2} m v^{2}+\frac{1}{2} I_{r} \omega_{0}^{2}(m)
$$

where $\boldsymbol{I}_{\boldsymbol{r}}=\boldsymbol{m} \boldsymbol{r}^{\mathbf{2}}-$ moment of inertia $\omega_{0}=æ_{0} / m$ - angular velocity
$\boldsymbol{E}_{r o t}=\boldsymbol{m} r^{2} \omega_{0}^{2} / \mathbf{2 -}$ is the kinesthetic energy of rotation.

Canonical Quantization $S_{B}^{2} \rightarrow \hat{S}_{B}^{2}$

Accoding the universal condition

$$
m_{e}^{2}=\frac{c a_{e}}{4 \pi G_{N}} \rightarrow\left(a_{e}=\frac{h}{2}\right) \rightarrow \frac{\hbar c}{4 G_{N}}=\frac{1}{4} M_{P}^{2}
$$

the parameters $\boldsymbol{p}_{\boldsymbol{e}}, \boldsymbol{q}_{\boldsymbol{e}}, \boldsymbol{E}_{\boldsymbol{e}}, \boldsymbol{t}_{\boldsymbol{e}}$ becomes Planken. The basic Born equation can be written in the form (Fock presentation)
$\hat{S}_{B}\left|n_{0}, n\right\rangle=2\left(\hat{H}_{0}-\sum_{k=1}^{3} \hat{H}_{k}\right)\left|n_{0}, n\right\rangle=\lambda_{B}\left(n_{0}, n\right)\left|n_{0}, n\right\rangle$,
where $\hat{\boldsymbol{H}}_{\boldsymbol{\mu}}(\boldsymbol{\mu}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$ are linear $\boldsymbol{Q H O s c}$ Hamiltonians.

The discrete spectrum of (mass) ${ }^{\mathbf{2}}$:

$$
M^{2}\left(n_{0}, n\right)=\left\{n_{0}-(n+1)\right\} M_{P}^{2}=N\left(n_{0}, n\right)\left(\frac{\hbar c}{G_{N}}\right)
$$

where $N\left(n_{0}, n\right)=n_{0}-(n+1), n=\sum_{k=1}^{3} n_{k}$.
Each of $\boldsymbol{n}_{\boldsymbol{\mu}}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \ldots(\boldsymbol{\mu}=\mathbf{0}, \mathbf{1}, \mathbf{2}, \mathbf{3})$ independently.
Eigenstates

$$
\left|n_{0}, n\right\rangle=\prod_{\mu=0}^{3}\left|n_{\mu}\right\rangle, \quad N(n)=\frac{1}{2}(n+1)(n+2)
$$

is the degeneracy degree of $|\boldsymbol{n}\rangle \sim\left|\boldsymbol{n}_{\mathbf{1}}\right\rangle\left|\boldsymbol{n}_{\mathbf{2}}\right\rangle\left|\boldsymbol{n}_{\mathbf{3}}\right\rangle$ states. In reality the operator \hat{S}_{B}^{2} is looking out as the quantummechanical action operator having linear spectrum $\boldsymbol{S}_{\boldsymbol{N}}$ in unit of \boldsymbol{h} :

$$
S_{N}=N \hbar \quad(N=1,2,3, \ldots)
$$

Canonical Quantization $H_{0}(\underline{P}, \underline{Q}) \rightarrow \hat{H}_{0}(\underline{\hat{P}}, \underline{\hat{Q}})$

Let as consider the variables $\hat{\boldsymbol{P}}_{\boldsymbol{k}}, \hat{\boldsymbol{Q}}_{\boldsymbol{l}}$ in the classical Energy integral

$$
H_{0}=\sqrt{\underline{P}^{2}+\underline{Q}^{2}+1}
$$

as canonically conjugated operators $\left[\hat{\boldsymbol{P}}_{\boldsymbol{k}}, \hat{\boldsymbol{Q}}_{\boldsymbol{l}}\right]=-\boldsymbol{i} \boldsymbol{\delta}_{\boldsymbol{k} \boldsymbol{l}}$, the constants $\boldsymbol{p}_{\boldsymbol{e}}$ and $\boldsymbol{q}_{\boldsymbol{e}}$ in definition

$$
\hat{Q}_{l}=\frac{\hat{x}_{l}}{q_{e}}, \quad \hat{P}_{k}=\frac{\hat{p}_{k}}{p_{e}}
$$

are Planken.

$$
\hat{H}_{0} \rightarrow \hat{H}_{0}=\left(\underline{\hat{P}}^{2}+\underline{\hat{Q}}^{2}+1\right)^{1 / 2}
$$

The root extraction according Dirac procedure gives (in noncovariant notations):
for $\boldsymbol{D O}$ Hamiltonian and its Supersymmetry Partner $\boldsymbol{H}_{\boldsymbol{D} \boldsymbol{O}}^{ \pm}$

$$
\begin{gathered}
\hat{H}_{0}^{ \pm}(\hat{P}, \hat{Q}, 1)=\alpha_{k} \hat{P}_{k}+\beta\left(I \mp i \alpha_{k} \hat{Q}_{k}\right)= \\
=\hat{H}_{D O}^{ \pm}=\alpha_{k}\left(\hat{P}_{k} \mp i \beta \hat{Q}_{k}\right)+\beta
\end{gathered}
$$

where $\alpha_{k}, \rho_{k}(k=1,2,3)-4 \times 4$ Dirac matrices, $\beta=\rho_{3}$. $\hat{\boldsymbol{H}}_{D O}^{ \pm}=\hat{\boldsymbol{H}}_{D O}^{ \pm}\left(\boldsymbol{M}_{\boldsymbol{P l}}\right)$ - well known Dirac Oscillator
Hamiltonian which describes the one-half Spin particle with a Plank mass. The exact solutions of this model are well known. But generally accepted physical interpretation of $\boldsymbol{D O}$-model is absent up to now.

Thank you for your attention

