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Introduction

The first observation of the resonant tunneling in semiconductor getero-
structures [1] induced considerable interest to a wide variety of potentials
which can simulate the double-barrier physical structures. For instance, the
rectangular [2], triangular [3] and trapezoidal [4] double-barrier potentials
were considered. These potentials are not smooth but allow the exact
solutions of the Schrödinger equation. The smooth potential was proposed
in [5] using Gaussian functions, however this potential does not permit
exact analytical solution. The phenomenon of resonant tunneling was also
analyzed in the framework of model with the parabolic well between two
rectangular barriers [6]. At last, the double-barrier potential was composed
with the help of two separated inverted parabolas in [7]. Note that the
first derivatives of potentials in [6] and [7] are discontinuous. At the same
time the smooth single barrier was constructed in [8] using both parabolas
and inverted parabolas. It is not hard to perform transition from the single
barrier to the double barrier by means of the simple duplication of the
potential profile proposed in [8].

2 / 15



The new symmetric potential function is of the form

V (q) = V0



0, 2q0 < |q|,

(|q| − 2q0)
2

(1− g)q20
, (1 + g)q0 < |q| < 2q0,

1−
(|q| − q0)2

gq20
, (1− g)q0 < |q| < (1 + g)q0,

q2

(1− g)q20
, 0 < |q| < (1− g)q0.

(1)

Here 0 < g < 1. The second derivative of the function (1) is discontinuous
at the points q = ∓2q0, q = ∓(1 + g)q0 and q = ∓(1 − g)q0. However,
both the function (1) and its first derivative are continuous. The presence
of a varied parameter g allows to change a shape of double-barrier potential
in the wide range.
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Analytical solution

We are interesting in solving the Schrödinger equation(
− ~2

2m

d2

dq2
+ V (q)

)
Ψ(q) = EΨ(q), (2)

where V (q) takes the form (3). It is convenient to introduce dimensionless
quantities

x =

√
2mV0

~2
q, x0 =

√
2mV0

~2
q0, e =

E

V0

. (3)
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The transformed Schrödinger equation is given as(
− d2

dx2
+ v(x)

)
ψ(x) = eψ(x) (4)

with the scaled potential

v(x) =



0, 2x0 < |x|,

(|x| − 2x0)
2

(1− g)x20
, (1 + g)x0 < |x| < 2x0,

1−
(|x| − x0)

2

gx20
, (1− g)x0 < |x| < (1 + g)x0,

x2

(1− g)x20
, 0 < |x| < (1− g)x0.

(5)
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The shape of v(x) is shown in fig. 1 for different values of g when x0 = 2.
Here and in subsequent figures we use dotted lines for g = 0.1, solid lines
for g = 0.5 and dashed lines for g = 0.9.
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Figure 1: The scaled potential v(x) for different values of g.
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The simplicity of the considered potential (5) permits to find the exact
solutions of Eq. (4) in five regions. The wave function is represented in
the following way

ψ(x) =



exp(i
√
e x) +A1 exp(−i

√
e x), x < −2x0,

A2 ys1(z
+
s ) +A3 ys2(z

+
s ), −2x0 < x < −(1 + g)x0,

A4 yc1(z
+
c ) +A5 yc2(z

+
c ), −(1 + g)x0 < x < −(1− g)x0,

A6 ys1(z
0
s) +A7 ys2(z

0
s), −(1− g)x0 < x < (1− g)x0,

A8 yc1(z
−
c ) +A9 yc2(z

−
c ), (1− g)x0 < x < (1 + g)x0,

A10 ys1(z
−
s ) +A11 ys2(z

−
s ), (1 + g)x0 < x < 2x0,

A12 exp(i
√
ex), 2x0 < x.

(6)
There are the incident and reflected waves in the region x < −2x0 and

there is the transmitted wave in the region x > 2x0. It is not hard to show
that the particular solutions in the region −2x0 < x < 2x0 are expressed
in terms of the confluent hypergeometric functions [9].

7 / 15



In the regions −2x0 < x < −(1 + g)x0, −(1 − g)x0 < x < (1 − g)x0

and (1 + g)x0 < x < 2x0, the explicit solutions are given by formulas

ys1(zs) = e−z
2
s/4M

(
as
2

+
1

4
,

1

2
,
z2s
2

)
, (7)

ys2(zs) = zse
−z2

s/4M

(
as
2

+
3

4
,

3

2
,
z2s
2

)
, (8)

z±s (x) =

(
2

x0

)1/2
(x± 2x0)

(1− g)1/4
, z0

s(x) =

(
2

x0

)1/2
x

(1− g)1/4
,

as = −
√

1− g
2

x0e. (9)
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In the regions −(1 + g)x0 < x < −(1 − g)x0 and (1 − g)x0 < x <
(1 + g)x0, we have the following solutions

yc1(zc) =
1

2

{
e−iz

2
c/4M

(
− iac

2
+

1

4
,

1

2
,
iz2c
2

)
+ eiz

2
c/4M

(
iac
2

+
1

4
,

1

2
,− iz

2
c

2

)}
, (10)

yc2(zc) =
zc
2

{
e−iz

2
c/4M

(
− iac

2
+

3

4
,

3

2
,
iz2c
2

)
+ eiz

2
c/4M

(
iac
2

+
3

4
,

3

2
,− iz

2
c

2

)}
, (11)

z±c (x) =

(
2

x0

)1/2
(x± x0)

g1/4
, ac =

√
g

2
x0(1− e). (12)

It should be stressed that these solutions are real.
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By joining the wave function and its first derivative smoothly at six
points x = ∓2x0, x = ∓(1 + g)x0 and x = ∓(1 − g)x0 we obtain the
system of twelve algebraic equations for twelve coefficients Ai. It is easily
to solve this system but the solutions are very cumbersome. Therefore we
represent only one coefficient

A12 =
1

2

(
L− + i

√
e

L− − i
√
e
− L+ + i

√
e

L+ − i
√
e

)
exp

(
−4ix0

√
e
)
, (13)

where we use notations

L+ =
4√
2x0

1

(1− g)1/4

(
f22
f12

+
f21
f11

)−1
,

L− =
1√
2x0

1

(1− g)1/4

(
f11
f21

+
f12
f22

)
,

fij = g−1/4ȳsiȳ
′
cj + (1− g)−1/4ȳcj ȳ

′
si, i = 1, 2 , j = 1, 2 ,

ȳsi = ysi(z̄s), ȳ′si =
dysi(z̄s)

dz̄s
, z̄s =

√
2x0 (1− g)3/4,

ȳcj = ycj(z̄c), ȳ′cj =
dycj(z̄c)

dz̄c
, z̄c =

√
2x0 g

3/4.
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The square of the absolute value of A12 is the transmission coefficient T
for the proposed double-barrier potentials (1). The final exact expression
is

T = |A12|2 =

(
1 +

d2

e

)−1
, (14)

where

d =
L+L− + e

L+ − L−
. (15)

It should be noted that T can be equal to 1 at selected values of e which
are the solutions of equation d(e) = 0. The resonant tunneling is realized
for the incident particle energies less than the barrier height when e < 1
(E < V0). Besides, there exist the transmission resonances for energies
greater than the barrier height when e > 1 (E > V0).
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Graphic illustrations

The dependence of the transmission coefficient T on a scaled energy e
is given in fig. 2 for x0 = 2 and in fig. 3 for x0 = 4 at different values of g.
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Figure 2: Dependence of T on e for
x0 = 2.
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Figure 3: Dependence of T on e for
x0 = 4.
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The behavior of function d(e) is demonstrated in fig. 4 for x0 = 2 and
in fig. 5 for x0 = 4. For example, the resonant tunneling takes place at
e = 0.338815 and 0.927657 for 0 < e < 1 and the resonant transmission
above barrier takes place at e = 1.50851, 2.01586 and 2.40852 for 1 <
e < 3 if g = 0.5 and x0 = 4. The transmission coefficient converges to
unity at high energies.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

-0.4

-0.2

0.0

0.2

0.4

e

d
(

Figure 4: Dependence of d on e for
x0 = 2.

1.0 1.5 2.0 2.5 3.0 3.5 4.0

-0.4

-0.2

0.0

0.2

0.4

e

d
(e
)

Figure 5: Dependence of d on e for
x0 = 4.
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At last, the real (solid lines) and the imaginary (dashed lines) compo-
nents of wave functions are represented in fig. 6 for x0 = 2 and in fig. 7
for x0 = 4 at e = 0.95 and g = 0.5.
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Figure 6: Wave function for x0 = 2.
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Figure 7: Wave function for x0 = 4.

The proposed parabolic potential extends a short list of exactly solvable
models that describe transmission through double barriers. The variable
shape of considered barrier gives the wide possibilities to simulate the
transmission phenomena. In the present paper, we examined a symmetric
potential but it is easily to construct an asymmetric smooth parabolic
potential.
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